首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   732篇
  免费   15篇
  国内免费   59篇
  2023年   3篇
  2022年   12篇
  2021年   21篇
  2020年   42篇
  2019年   35篇
  2018年   28篇
  2017年   29篇
  2016年   27篇
  2015年   28篇
  2014年   53篇
  2013年   73篇
  2012年   23篇
  2011年   77篇
  2010年   23篇
  2009年   52篇
  2008年   54篇
  2007年   34篇
  2006年   24篇
  2005年   26篇
  2004年   29篇
  2003年   25篇
  2002年   16篇
  2001年   12篇
  2000年   11篇
  1999年   8篇
  1998年   5篇
  1997年   9篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
排序方式: 共有806条查询结果,搜索用时 28 毫秒
101.
A biological treatment plant is utilized at the Homestake Mine in Lead, SD, to effect detoxification of a daily discharge of 4 million gallons of wastewater. The wastewater matrix requiring treatment contains cyanide, ammonia, toxic heavy metals, and a variable component of toxic chemicals associated with extractive metallurgy and mining operations. Rotating biological contactors (RBCs) are used to attach the biofilm. Cyanides and heavy metals concentrations are reduced by 95–98%. The treated discharge makes up as much as 60% of the total flow in a cold‐water trout fishery. This receiving stream, which remained lifeless for over 100 years as a mine drainage, has now become an established trout fishery and recently yielded a state record trout.  相似文献   
102.
《Phytomedicine》2014,21(3):286-289
Resveratrol, a phytochemical commonly found in the skin of grapes and berries, was tested for its biofilm inhibitory activity against Vibrio cholerae. Biofilm inhibition was assessed using crystal violet assay. MTT assay was performed to check the viability of the treated bacterial cells and the biofilm architecture was analysed using confocal laser scanning microscopy. The possible target of the compound was determined by docking analysis. Results showed that subinhibitory concentrations of the compound could significantly inhibit biofilm formation in V. cholerae in a concentration-dependent manner. AphB was found to be the putative target of resveratrol using docking analysis. The results generated in this study proved that resveratrol is a potent biofilm inhibitor of V. cholerae and can be used as a novel therapeutic agent against cholera. To our knowledge, this is the first report of resveratrol showing antibiofilm activity against V. cholerae.  相似文献   
103.
ProjectThe opportunistic fungal Candida albicans can produce superficial and systemic infections in immunocompromised patients. An essential stage to both colonization and virulence by C. albicans is the transition from budding yeast form to filamentous form, producing biofilms.ProcedureIn this work, we studied the effect of the organochalcogenide compound (PhSe)2 on both cell growth and biofilm formation by C. albicans.Results(PhSe)2 inhibited both growth and biofilm formation by C. albicans. The inhibitory effects of (PhSe)2 depended on the cell density and (PhSe)2 concentration. We have also observed that (PhSe)2 stimulated ROS production (67%) and increased cell membrane permeability (2.94-fold) in C. albicans. In addition, (PhSe)2 caused a marked decrease in proteinase activity (6.8-fold) in relation to non-treated group.Conclusions(PhSe)2 decreased both cell growth and biofilm development, decreasing the release of extracellular proteinases, which is an important facet of C. albicans pathogenicity. The toxicity of (PhSe)2 towards C. albicans can be associated with an increase in ROS production, which can increase cell permeability. The permanent damage to the cell membranes can culminate in cell death.  相似文献   
104.
Antimicrobial surfaces are one approach to prevent biofilms in the food industry. The aim of this study was to investigate the effect of poly((tert-butyl-amino)-methyl-styrene) (poly(TBAMS)) incorporated into linear low-density polyethylene (LLDPE) on the formation of mono- and mixed-species biofilms. The biofilm on untreated and treated LLDPE was determined after 48 and 168 h. The comparison of the results indicated that the ability of Listeria monocytogenes to form biofilms was completely suppressed by poly(TBAMS) (Δ168 h 3.2 log10 cfu cm?2) and colonization of Staphylococcus aureus and Escherichia coli was significantly delayed, but no effect on Pseudomonas fluorescens was observed. The results of dual-species biofilms showed complex interactions between the microorganisms, but comparable effects on the individual bacteria by poly(TBAMS) were identified. Antimicrobial treatment with poly(TBAMS) shows great potential to prevent biofilms on polymeric surfaces. However, a further development of the material is necessary to reduce the colonization of strong biofilm formers.  相似文献   
105.
A series of cationic lipo-benzamide compounds with varying lengths of hydrocarbon chains (C2MC18M) were evaluated for anti-Candida activity. Four compounds harbouring 8–11 hydrocarbon chains demonstrated concentration-dependent inhibition of fungal cell growth with Minimum Inhibitory Concentration (MIC) of ≤6.2?µg?ml?1. The most active compound (C9M) inhibited growth of both Candida albicans and non-albicans strains and is equally active against pairs of azole sensitive and resistant clinical isolates of C. albicans. Compound C9M also inhibited different stages of Candida biofilms. Scanning Electron Microscopy (SEM) of Candida cells after C9M treatment was also done and no significant cell lysis was observed. Hemolysis assay was performed and only 2.5% haemolysis was observed at MIC concentration.  相似文献   
106.
Within the past 5?years, tremendous advances have been made to maximize the performance of microbial fuel cells (MFCs) for both “clean” bioenergy production and bioremediation. Most research efforts have focused on parameters including (i) optimizing reactor configuration, (ii) electrode construction, (iii) addition of redox-active, electron donating mediators, (iv) biofilm acclimation and feed nutrient adjustment, as well as (v) other parameters that contribute to enhanced MFC performance. To date, tremendous advances have been made, but further improvements are needed for MFCs to be economically practical. In this review, the diversity of electrogenic microorganisms and microbial community changes in mixed cultures are discussed. More importantly, different approaches including chemical/genetic modifications and gene regulation of exoelectrogens, synthetic biology approaches and bacterial community cooperation are reviewed. Advances in recent years in metagenomics and microbiomes have allowed researchers to improve bacterial electrogenicity of robust biofilms in MFCs using novel, unconventional approaches. Taken together, this review provides some important and timely information to researchers who are examining additional means to enhance power production of MFCs.  相似文献   
107.
108.
Escherichia coli was used as a model to study initial adhesion and early biofilm development to abiotic surface. Tn10 insertion mutants of Escherichia coli K-12 W3110 were selected for altered abilities to adhere to a polystyrene surface. Seven insertion mutants that showed a decrease in adhesion harbored insertions in genes involved in lipopolysaccharide (LPS) core biosynthesis. Two insertions were located in the rfaG gene, two in the rfaP gene, and three in the galU gene. These adhesion mutants were found to exhibit a deep-rough phenotype and to be reduced, at different levels, in type 1 fimbriae production and motility. The loss of adhesion exhibited by these mutants was associated with either the affected type 1 fimbriae production and/or the dysfunctional motility. Apart from the pleiotropic effect of the mutations affecting LPS on type 1 fimbriae and flagella biosynthesis, no evidence for an involvement of the LPS itself in adhesion to polystyrene surface could be observed. Received: 1 December 1998 / Accepted: 3 April 1999  相似文献   
109.
结核分枝杆菌(Mycobacterium tuberculosis)是引起结核病的病原菌。其处于持续生存的休眠状态时,可导致长期无症状感染,称为结核潜伏感染。研究显示,结核分枝杆菌染色体中存在大量 “毒素-抗毒素系统”(toxin-antitoxin system,TAS),某些TAS在潜伏感染中发挥作用,可调节细菌生长和诱导细菌进入休眠状态;某些TAS参与生物膜形成和应激反应,但其影响生物膜形成的机制尚未阐明。生物膜中的结核分枝杆菌对多种抗结核药物耐药,且能抵抗宿主免疫系统防御;休眠状态的结核分枝杆菌对抗结核药物通常也是耐受的,给结核病治疗带来了巨大挑战。本文就近年来结核分枝杆菌TAS与生物膜的研究及抗结核药物对生物膜形成的影响进行综述。  相似文献   
110.
Characterization of biofilm formation on a humic material   总被引:1,自引:0,他引:1  
Biofilms are major sites of carbon cycling in streams. Therefore, it is crucial to improve knowledge about biofilms’ structure and microbial composition to understand their contribution in the self-purification of surface water. The present work intends to study biofilm formation in the presence of humic substances (HSs) as a carbon source. Two biofilm flowcells were operated in parallel; one with synthetic stream water, displaying a background carbon concentration of 1.26 ± 0.84 mg L−1, the other with added HSs and an overall carbon concentration of 9.68 ± 1.00 mg L−1. From the biofilms’ results of culturable and total countable cells, it can be concluded that the presence of HSs did not significantly enhance the biofilm cell density. However, the biofilm formed in the presence of HSs presented slightly higher values of volatile suspended solids (VSS) and protein. One possible explanation for this result is that HSs adsorbed to the polymeric matrix of the biofilm and were included in the quantification of VSS and protein. The microbial composition of the biofilm with addition of HSs was characterized by the presence of bacteria belonging to beta-Proteobacteria, Cupriavidus metallidurans and several species of the genus Ralstonia were identified, and gamma-Proteobacteria, represented by Escherichia coli. In the biofilm formed without HSs addition beta-Proteobacteria, represented by the species Variovorax paradoxus, and bacteria belonging to the group Bacteroidetes were detected. In conclusion, the presence of HSs did not significantly enhance biofilm cell density but influenced the bacterial diversity in the biofilm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号