首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   3篇
  国内免费   4篇
  2022年   2篇
  2021年   3篇
  2020年   6篇
  2019年   2篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   8篇
  2014年   7篇
  2013年   7篇
  2012年   7篇
  2011年   32篇
  2010年   6篇
  2009年   18篇
  2008年   5篇
  2007年   3篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
排序方式: 共有120条查询结果,搜索用时 46 毫秒
91.
Evidence is presented that xylose metabolism in the anaerobic cellulolytic fungus Piromyces sp. E2 proceeds via a xylose isomerase rather than via the xylose reductase/xylitol-dehydrogenase pathway found in xylose-metabolising yeasts. The XylA gene encoding the Piromyces xylose isomerase was functionally expressed in Saccharomyces cerevisiae. Heterologous isomerase activities in cell extracts, assayed at 30 degrees C, were 0.3-1.1 micromol min(-1) (mg protein)(-1), with a Km for xylose of 20 mM. The engineered S. cerevisiae strain grew very slowly on xylose. It co-consumed xylose in aerobic and anaerobic glucose-limited chemostat cultures at rates of 0.33 and 0.73 mmol (g biomass)(-1) h(-1), respectively.  相似文献   
92.
Hu Y  Zhan N  Dou C  Huang H  Han Y  Yu D  Hu Y 《Biotechnology journal》2010,5(11):1186-1191
Bio-ethanol dehydration to ethylene is an attractive alternative to oil-based ethylene. The influence of fusel, main byproducts in the fermentation process of bio-ethanol production, on the bio-ethanol dehydration should not be ignored. We studied the catalytic dehydration of bio-ethanol to ethylene over parent and modified HZSM-5 at 250°C, with weight hourly space velocity (WHSV) equal to 2.0/h. The influences of a series of fusel, such as isopropanol, isobutanol and isopentanol, on the ethanol dehydration over the catalysts were investigated. The 0.5%La-2%PHZSM-5 catalyst exhibited higher ethanol conversion (100%), ethylene selectivity (99%), and especially enhanced stability (more than 70 h) than the parent and other modified HZSM-5. We demonstrated that the introduction of lanthanum and phosphorous to HZSM-5 could weaken the negative influence of fusel on the formation of ethylene. The physicochemical properties of the catalysts were characterized by ammonia temperature-programmed desorption (NH(3)-TPD), nitrogen adsorption and thermogravimetry (TG)/differential thermogravimetry (DTG)/differential thermal analysis (DTA) (TG/DTG/DTA) techniques. The results indicated that the introduction of lanthanum and phosphorous to HZSM-5 could inhibit the formation of coking during the ethanol dehydration to ethylene in the presence of fusel. The development of an efficient catalyst is one of the key technologies for the industrialization of bio-ethylene.  相似文献   
93.
Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and residual sugars were quantified. The size of the soluble xylans was estimated by size exclusion chromatography. The pretreatments resulted in relatively low monosaccharide release, but conditions were reached to obtain most of the xylan-structures in the soluble part. A state of the art commercial enzyme preparation, Cellic CTec2, was tested in hydrolyzing these dilute acid-pretreated feedstocks. The xylose and glucose liberated were fermented by a recombinant Saccharomyces cerevisiae strain. In the simultaneous enzymatic saccharification and fermentation system employed, a concentration of more than 5% (v/v) (0.2 g per g of dry matter) of ethanol was reached.  相似文献   
94.
95.
The aim of this work was to study the feasibility of using sugarcane tops as feedstock for the production of bioethanol. The process involved the pretreatment using acid followed by enzymatic saccharification using cellulases and the process was optimized for various parameters such as biomass loading, enzyme loading, surfactant concentration and incubation time using Box–Behnken design. Under optimum hydrolysis conditions, 0.685 g/g of reducing sugar was produced per gram of pretreated biomass. The fermentation of the hydrolyzate using Saccharomyces cerevisae produced 11.365 g/L of bioethanol with an efficiency of about 50%. This is the first report on utilization of sugarcane tops for bioethanol production.  相似文献   
96.
Alfalfa (Medicago sativa L.) biomass was evaluated for biochemical conversion into ethanol using dilute-acid and ammonia pretreatments. The two alfalfa lines compared were a reduced S-lignin transgenic cultivar generated through down regulation of the caffeic acid O-methyltransferase gene and a wild-type control. Both were harvested at two maturities. All the samples had similar carbohydrate contents including a mean composition of 316 g glucan and 497 g total neutral carbohydrates per kg dry biomass, which corresponds to a theoretic ethanol yield of 382 l/ton. Ethanol yields for alfalfa stems pretreated with dilute-acid were significantly impacted by harvest maturity and lignin composition, whereas when pretreated with dilute-ammonia, yield was solely affected by lignin composition. Use of a recombinant xylose-fermenting Saccharomyces strain, for converting the ammonia pretreated alfalfa samples, further increased ethanol yields. Ethanol yields for the xylose-fermenting yeast were 232-278 l/ton and were significantly enhanced for the reduced S lignin cultivars.  相似文献   
97.
The potential of biogas production from the residues of second generation bioethanol production was investigated taking into consideration two types of pretreatment: lime or alkaline hydrogen peroxide. Bagasse was pretreated, enzymatically hydrolyzed and the wastes from pretreatment and hydrolysis were used to produce biogas. Results have shown that if pretreatment is carried out at a bagasse concentration of 4% DM, the highest global methane production is obtained with the peroxide pretreatment: 72.1 L methane/kg bagasse. The recovery of lignin from the peroxide pretreatment liquor was also the highest, 112.7 ± 0.01 g/kg of bagasse. Evaluation of four different biofuel production scenarios has shown that 63-65% of the energy that would be produced by bagasse incineration can be recovered by combining ethanol production with the combustion of lignin and hydrolysis residues, along with the anaerobic digestion of pretreatment liquors, while only 32-33% of the energy is recovered by bioethanol production alone.  相似文献   
98.
One of the defining features of the fermentation process used in the production of bioethanol from sugarcane feedstock is the dynamic nature of the yeast population. Minisatellite molecular markers are particularly useful for monitoring yeast communities because they produce polymorphic PCR products that typically display wide size variations. We compared the coding sequences derived from the genome of the sugarcane bioethanol strain JAY270/PE-2 to those of the reference Saccharomyces cerevisiae laboratory strain S288c, and searched for genes containing insertion or deletion polymorphisms larger than 24 bp. We then designed oligonucleotide primers flanking nine of these sites, and used them to amplify differentially sized PCR products. We analyzed the banding patterns in the most widely adopted sugarcane bioethanol strains and in several indigenous yeast contaminants, and found that our marker set had very good discriminatory power. Subsequently, these markers were used to successfully monitor the yeast cell populations in six sugarcane bioethanol distilleries. Additionally, we showed that most of the markers described here are also polymorphic among strains unrelated to bioethanol production, suggesting that they may be applied universally in S. cerevisiae. Because the relatively large polymorphisms are detectable in conventional agarose gels, our method is well suited to modestly equipped on-site laboratories at bioethanol distilleries, therefore providing both cost and time savings.  相似文献   
99.
Microbial interactions represent important modulatory role in the dynamics of biological processes. During bioethanol production from sugar cane must, the presence of lactic acid bacteria (LAB) and wild yeasts is inevitable as they originate from the raw material and industrial environment. Increasing the concentration of ethanol, organic acids, and other extracellular metabolites in the fermentation must are revealed as wise strategies for survival by certain microorganisms. Despite this, the co-existence of LAB and yeasts in the fermentation vat and production of compounds such as organic acids and other extracellular metabolites result in reduction in the final yield of the bioethanol production process. In addition to the competition for nutrients, reduction of cellular viability of yeast strain responsible for fermentation, flocculation, biofilm formation, and changes in cell morphology are listed as important factors for reductions in productivity. Although these consequences are scientifically well established, there is still a gap about the physiological and molecular mechanisms governing these interactions. This review aims to discuss the potential occurrence of quorum sensing mechanisms between bacteria (mainly LAB) and yeasts and to highlight how the understanding of such mechanisms can result in very relevant and useful tools to benefit the biofuels industry and other sectors of biotechnology in which bacteria and yeast may co-exist in fermentation processes.  相似文献   
100.
Biodiesel has emerged as an environmentally friendly alternative to fossil fuels; however, the low price of glycerol feed‐stocks generated from the biodiesel industry has become a burden to this industry. A feasible alternative is the microbial biotransformation of waste glycerol to hydrogen and ethanol. Escherichia coli, a microorganism commonly used for metabolic engineering, is able to biotransform glycerol into these products. Nevertheless, the wild type strain yields can be improved by rewiring the carbon flux to the desired products by genetic engineering. Due to the importance of the central carbon metabolism in hydrogen and ethanol synthesis, E. coli single null mutant strains for enzymes of the TCA cycle and other related reactions were studied in this work. These strains were grown anaerobically in a glycerol‐based medium and the concentrations of ethanol, glycerol, succinate and hydrogen were analysed by HPLC and GC. It was found that the reductive branch is the more relevant pathway for the aim of this work, with malate playing a central role. It was also found that the putative C4‐transporter dcuD mutant improved the target product yields. These results will contribute to reveal novel metabolic engineering strategies for improving hydrogen and ethanol production by E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号