首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6771篇
  免费   697篇
  国内免费   237篇
  2024年   13篇
  2023年   93篇
  2022年   134篇
  2021年   227篇
  2020年   211篇
  2019年   272篇
  2018年   231篇
  2017年   243篇
  2016年   277篇
  2015年   307篇
  2014年   358篇
  2013年   437篇
  2012年   365篇
  2011年   298篇
  2010年   269篇
  2009年   434篇
  2008年   352篇
  2007年   355篇
  2006年   291篇
  2005年   282篇
  2004年   214篇
  2003年   188篇
  2002年   173篇
  2001年   136篇
  2000年   146篇
  1999年   138篇
  1998年   124篇
  1997年   120篇
  1996年   110篇
  1995年   80篇
  1994年   94篇
  1993年   84篇
  1992年   75篇
  1991年   66篇
  1990年   58篇
  1989年   47篇
  1988年   48篇
  1987年   39篇
  1986年   29篇
  1985年   29篇
  1984年   44篇
  1983年   26篇
  1982年   26篇
  1981年   39篇
  1980年   27篇
  1979年   29篇
  1978年   20篇
  1977年   12篇
  1976年   18篇
  1973年   7篇
排序方式: 共有7705条查询结果,搜索用时 156 毫秒
961.
962.
1. Genetic polymorphisms of flowering plants can influence pollinator foraging but it is not known whether heritable foraging polymorphisms of pollinators influence their pollination efficacies. Honey bees Apis mellifera L. visit cranberry flowers for nectar but rarely for pollen when alternative preferred flowers grow nearby. 2. Cranberry flowers visited once by pollen‐foraging honey bees received four‐fold more stigmatic pollen than flowers visited by mere nectar‐foragers (excluding nectar thieves). Manual greenhouse pollinations with fixed numbers of pollen tetrads (0, 2, 4, 8, 16, 32) achieved maximal fruit set with just eight pollen tetrads. Pollen‐foraging honey bees yielded a calculated 63% more berries than equal numbers of non‐thieving nectar‐foragers, even though both classes of forager made stigmatic contact. 3. Colonies headed by queens of a pollen‐hoarding genotype fielded significantly more pollen‐foraging trips than standard commercial genotypes, as did hives fitted with permanently engaged pollen traps or colonies containing more larvae. Pollen‐hoarding colonies together brought back twice as many cranberry pollen loads as control colonies, which was marginally significant despite marked daily variation in the proportion of collected pollen that was cranberry. 4. Caloric supplementation of matched, paired colonies failed to enhance pollen foraging despite the meagre nectar yields of individual cranberry flowers. 5. Heritable behavioural polymorphisms of the honey bee, such as pollen‐hoarding, can enhance fruit and seed set by a floral host (e.g. cranberry), but only if more preferred pollen hosts are absent or rare. Otherwise, honey bees' broad polylecty, flight range, and daily idiosyncrasies in floral fidelity will obscure specific pollen‐foraging differences at a given floral host, even among paired colonies in a seemingly uniform agricultural setting.  相似文献   
963.
Falling costs for genome sequencing and genotyping mean that population genomic data sets are becoming commonplace for a wide variety of species. Once these data are used for the initial tasks of investigating population structure and demographic history, however, is there reason to go back for more? In this issue of Molecular Ecology, Nkhoma et al. (2013) explore the applications of longitudinal genomic diversity data for detecting changes in the prevalence and transmission of the Plasmodium falciparum malaria parasite in South‐East Asia. While this study finds several genetic signatures indicative of reduced disease transmission, other measures, such as short‐term effective population size, geographical population structure and heterozygosity, were not informative. These results indicate the potential contribution of genomic data to the surveillance of small, dynamic populations, whether they are at risk of extinction or targeted for elimination. The interpretation of such data will require close consideration of biological context, however, at both the species and the population level.  相似文献   
964.
The ‘tree lobsters’ are an enigmatic group of robust, ground-dwelling stick insects (order Phasmatodea) from the subfamily Eurycanthinae, distributed in New Guinea, New Caledonia and associated islands. Its most famous member is the Lord Howe Island stick insect Dryococelus australis (Montrouzier), which was believed to have become extinct but was rediscovered in 2001 and is considered to be one of the rarest insects in the world. To resolve the evolutionary position of Dryococelus, we constructed a phylogeny from approximately 2.4 kb of mitochondrial and nuclear sequence data from representatives of all major phasmatodean lineages. Our data placed Dryococelus and the New Caledonian tree lobsters outside the New Guinean Eurycanthinae as members of an unrelated Australasian stick insect clade, the Lanceocercata. These results suggest a convergent origin of the ‘tree lobster’ body form. Our reanalysis of tree lobster characters provides additional support for our hypothesis of convergent evolution. We conclude that the phenotypic traits leading to the traditional classification are convergent adaptations to ground-living behaviour. Our molecular dating analyses indicate an ancient divergence (more than 22 Myr ago) between Dryococelus and its Australian relatives. Hence, Dryococelus represents a long-standing separate evolutionary lineage within the stick insects and must be regarded as a key taxon to protect with respect to phasmatodean diversity.  相似文献   
965.
966.
Mutations causing a touch-insensitive phenotype in the nematode Caenorhabditis elegans have been the basis of studies on the specification of neuronal cell fate, inherited neurodegeneration, and the molecular nature of mechanosensory transduction. © 1993 John Wiley & Sons, Inc.  相似文献   
967.
968.
《Current biology : CB》2020,30(4):589-599.e5
  1. Download : Download high-res image (97KB)
  2. Download : Download full-size image
  相似文献   
969.
970.
Inhibited dispersal, leading to reduced gene flow, threatens populations with inbreeding depression and local extinction. Fragmentation may be especially detrimental to social insects because inhibited gene flow has important consequences for cooperation and competition within and among colonies. Army ants have winged males and permanently wingless queens; these traits imply male‐biased dispersal. However, army ant colonies are obligately nomadic and have the potential to traverse landscapes. Eciton burchellii, the most regularly nomadic army ant, is a forest interior species: colony raiding activities are limited in the absence of forest cover. To examine whether nomadism and landscape (forest clearing and elevation) affect population genetic structure in a montane E. burchellii population, we reconstructed queen and male genotypes from 25 colonies at seven polymorphic microsatellite loci. Pairwise genetic distances among individuals were compared to pairwise geographical and resistance distances using regressions with permutations, partial Mantel tests and random forests analyses. Although there was no significant spatial genetic structure in queens or males in montane forest, dispersal may be male‐biased. We found significant isolation by landscape resistance for queens based on land cover (forest clearing), but not on elevation. Summed colony emigrations over the lifetime of the queen may contribute to gene flow in this species and forest clearing impedes these movements and subsequent gene dispersal. Further forest cover removal may increasingly inhibit Eciton burchellii colony dispersal. We recommend maintaining habitat connectivity in tropical forests to promote population persistence for this keystone species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号