首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1848篇
  免费   120篇
  国内免费   206篇
  2024年   6篇
  2023年   72篇
  2022年   93篇
  2021年   112篇
  2020年   99篇
  2019年   107篇
  2018年   96篇
  2017年   85篇
  2016年   68篇
  2015年   73篇
  2014年   82篇
  2013年   131篇
  2012年   60篇
  2011年   80篇
  2010年   48篇
  2009年   94篇
  2008年   101篇
  2007年   102篇
  2006年   69篇
  2005年   42篇
  2004年   66篇
  2003年   53篇
  2002年   37篇
  2001年   25篇
  2000年   18篇
  1999年   33篇
  1998年   14篇
  1997年   21篇
  1996年   42篇
  1995年   15篇
  1994年   22篇
  1993年   14篇
  1992年   19篇
  1991年   18篇
  1990年   18篇
  1989年   15篇
  1988年   14篇
  1987年   5篇
  1986年   11篇
  1985年   16篇
  1984年   18篇
  1983年   9篇
  1982年   11篇
  1981年   10篇
  1980年   8篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1975年   3篇
  1974年   3篇
排序方式: 共有2174条查询结果,搜索用时 380 毫秒
111.
A bioactive foam reactor (BFR), a novel bioreactor operated using surfactant foams and suspended microorganisms for the treatment of gaseous toluene, was investigated to characterize its performance with respect to the mass transfer and biodegradation rates. The BFR system consisted of two reactors in series; a foam column for toluene mass transfer using fine bubbles and a cell reservoir where suspended microorganisms actively biodegraded toluene. In this study, a series of short-term experiments demonstrated that the BFR could achieve stable removal performance and a high elimination capacity (EC) for toluene at 100.3 g/m3/h. A numerical model, combining mass balance equations for the mass transfer and subsequent biodegradation, resulted in reasonable agreement with the experimental findings. At an inlet toluene concentration of 100 ppmv, the toluene concentration in the liquid phase remained extremely low, indicating that the microbial activity was not hindered in the BFR system. However, the experimental and model prediction results showed that the actual mass of toluene transferred into the liquid phase was not closely balanced with the amount of toluene biodegraded in the BFR used in this study. Consequently, methods, such as increasing the effective volume of the foam column or the mass transfer coefficient, need to be implemented to achieve higher toluene EC and better BFR performance.  相似文献   
112.
113.
114.
Epigenetic changes are important mechanisms in the regulation of chromatin structure and gene expression. Cytosine methylation is one of the major epigenetic modifications, mediated by DNA methyltransferases, which transfer methyl groups from S‐adenosyl‐L‐methionine (SAM) to the fifth carbon of cytosine. Various external environmental conditions can change the global hypo/hypermethylation pattern of DNA. These alterations may affect the organism's response to stress conditions. In this study, for the first time, we investigated the effects of 5‐azacytidine, a DNA methyltransferase inhibitor, and cadmium, a toxic metal and environmental pollutant, on the growth, biosynthesis of secondary metabolites (phenols, flavonoids, carotenoids), SAM, S‐adenosylhomocysteine, 5′‐methylthioadenosine and global 5‐methylcytosine (5‐mC) in the green microalgae Chlamydomonas reinhardtii and Scenedesmus quadricauda. The studied species showed major differences in 5‐mC content, secondary metabolite content, and antioxidant activity. Cadmium increased GSH (glutathione) content in C. reinhardtii by 60% whereas 5‐azacytidine did not affect GSH. The biosynthesis of GSH in S. quadricauda in response to the stressors was the opposite. Global 5‐mC content of C. reinhardtii was 1%–1.5%, and the content in S. quadricauda was 3.5%. Amount of some investigated methionine cycle metabolites (SAM, S‐adenosyl homocysteine [SAH], methionine) in S. quadricauda distinctly exceeded C. reinhardtii as well. However, chlorophylls a and b, carotenoids, total phenolic content, total flavonoid content and, antioxidant activity were significantly higher in C. reinhardtii than S. quadricauda. Therefore, in further studies it would be advisable to verify whether methylation of cytosine affects the expression of genes encoding certain secondary metabolites.  相似文献   
115.
Pleurocapsales are one of the least understood groups of cyanobacteria in terms of molecular systematics and biochemistry. Considering the high number of cryptic taxa within the Synechococcales and Oscillatoriales, it is likely that such taxa also occur in the Pleurocapsales. The new genus described in our research is the first known pleurocapsalean cryptic taxon. It produces off‐flavor and a large number of bioactive metabolites (n = 38) some of which can be toxic including four known microcystins. Using a polyphasic approach, we propose the establishment of the genus Odorella with the new species O. benthonica from material originally isolated from the California Aqueduct near Los Angeles.  相似文献   
116.
The present study reports about the phytochemical analysis of a sample of Daphne oleoides Schreb. subsp. oleoides (family Thymelaeaceae) collected from the Majella National Park. Twenty components, belonging to different classes of natural products, have been identified by means of spectroscopic and spectrometric techniques: [monomeric (4), bis- (5, 710, 20) and trimeric coumarins (11), including aglycones and glycosides, coumarinolignoid (6); flavonoids (1619); glycosidic furolignans (14, 15), glucosidic phenylpropanoids (12, 13), cyclic tetrapyrrole derivatives (2, 3), unsaturated triglyceride (1)]. Besides the chemosystematic markers of the genus (410, 12, 1418, 20) several other components were identified for the first time in the species (17, 20) and/or in the Daphne genus (13, 13, 19). The observed composition was discussed from the chemotaxonomic standpoint and compared with those recognized from a Sardinian accession. It was observed a pronounced difference in the two metabolites patterns, most probably attributable to geographic isolation of the studied populations and, in some extent, also by the different environmental conditions, evidencing a possible tendency of D. oleoides to the infraspecific chemovariability. Considering the wide traditional uses of Daphne spp. in ethnomedicine of several countries, also the pharmacologic potential of the identified secondary metabolites is discussed.  相似文献   
117.
Actinomycetes are one of the most valuable sources of natural products with industrial and medicinal importance. After more than half a century of exploitation, it has become increasingly challenging to find novel natural products with useful properties as the same known compounds are often repeatedly re-discovered when using traditional approaches. Modern genome mining approaches have led to the discovery of new biosynthetic gene clusters, thus indicating that actinomycetes still harbor a huge unexploited potential to produce novel natural products. In recent years, innovative synthetic biology and metabolic engineering tools have greatly accelerated the discovery of new natural products and the engineering of actinomycetes. In the first part of this review, we outline the successful application of metabolic engineering to optimize natural product production, focusing on the use of multi-omics data, genome-scale metabolic models, rational approaches to balance precursor pools, and the engineering of regulatory genes and regulatory elements. In the second part, we summarize the recent advances of synthetic biology for actinomycetal metabolic engineering including cluster assembly, cloning and expression, CRISPR/Cas9 technologies, and chassis strain development for natural product overproduction and discovery. Finally, we describe new advances in reprogramming biosynthetic pathways through polyketide synthase and non-ribosomal peptide synthetase engineering. These new developments are expected to revitalize discovery and development of new natural products with medicinal and other industrial applications.  相似文献   
118.
The stochasticity of Aspergillus oryzae (Trivially: the koji mold) pan-metabolomes commensurate with its ubiquitously distributed landscapes, i.e. growth matrices have been seemed uncharted since its food fermentative systems are mostly being investigated. In this review, we explicitly have discussed the likely tendencies of A. oryzae metabolomes pertaining to its growth milieu formulated with substrate matrices of varying nature, composition, texture, and associated physicochemical parameters. We envisaged typical food matrices, namely, meju, koji, and moromi as the semi-natural cultivation models toward delineating the metabolomic patterns of the koji mold, which synergistically influences the organoleptic and functional properties of the end products. Further, we highlighted how tailored conditions in sub-natural growth matrices, i.e. synthetic cultivation media blends, inducers, and growth surfaces, may influence A. oryzae metabolomes and targeted phenotypes. In general, the sequential or synchronous growth of A. oryzae on formulated matrices results in a number of metabolic tradeoffs with its immediate microenvironment influencing its adaptive and regulatory metabolomes. In broader context, evaluating the metabolic plasticity of A. oryzae relative to the tractable variables in formulated growth matrices might help approximate its growth and metabolism in the more complex natural matrices and environs. These approaches may considerably help in the design and manipulation of hybrid cultivation systems towards the efficient harnessing of commercial molds.  相似文献   
119.
为探讨半枫荷干预类风湿性关节炎(rheumatoid arthritis, RA)模型大鼠血浆内容物代谢轮廓的变化和特征,该研究以半枫荷正丁醇提取物给药前后RA模型大鼠血浆为研究对象,借助超高效液相色谱联用四极杆飞行时间质谱(UPLC-QTOF/MS)技术进行非靶向代谢组学检测,并用SIMCA-P软件对代谢物测定结果进行多元变量统计分析,筛选差异代谢物并作通路富集分析。结果表明:(1)给药前后大鼠血浆代谢轮廓存在显著差异,与模型组相比,给药组在正负离子模式合并后筛选出321种差异代谢物,其中负离子模式鉴定到174种代谢物,正离子模式鉴定到192种代谢物。(2)鉴定到的所有代谢物根据其化学分类归属信息归为12种类型,有机酸及其衍生物和脂类及类脂分子这2类代谢物数量占比较高。(3)通路富集获得37个代谢通路且呈显著性差异(P<0.05),给药组中蛋白质的消化和吸收、肿瘤胆碱代谢通路和ABC转运蛋白通路出现较大扰动且富集到的差异代谢物数量最多,所有通路均显著上调(P<0.05)。这对阐明半枫荷调控RA症状的变化机制具有一定指导价值和理论意义。  相似文献   
120.
Chromatin, the complex of DNA and histone proteins, serves as a main integrator of cellular signals. Increasing evidence links cellular functional to chromatin state. Indeed, different metabolites are emerging as modulators of chromatin function and structure. Alterations in chromatin state are decisive for regulating all aspects of genome function and ultimately have the potential to produce phenotypic changes. Several metabolites such as acetyl-CoA, S-adenosylmethionine (SAM) or adenosine triphosphate (ATP) have now been well characterized as main substrates or cofactors of chromatin-modifying enzymes. However, there are other metabolites that can directly interact with chromatin influencing its state or that modulate the properties of chromatin regulatory factors. Also, there is a growing list of atypical enzymatic and nonenzymatic chromatin modifications that originate from different cellular pathways that have not been in the limelight of chromatin research. Here, we summarize different properties and functions of uncommon regulatory molecules originating from intermediate metabolism of lipids, carbohydrates and amino acids. Based on the various modes of action on chromatin and the plethora of putative, so far not described chromatin-regulating metabolites, we propose that there are more links between cellular functional state and chromatin regulation to be discovered. We hypothesize that these connections could provide interesting starting points for interfering with cellular epigenetic states at a molecular level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号