首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   21篇
  国内免费   4篇
  2024年   2篇
  2023年   13篇
  2022年   14篇
  2021年   18篇
  2020年   23篇
  2019年   17篇
  2018年   22篇
  2017年   6篇
  2016年   7篇
  2015年   17篇
  2014年   30篇
  2013年   17篇
  2012年   10篇
  2011年   14篇
  2010年   10篇
  2009年   15篇
  2008年   8篇
  2007年   14篇
  2006年   9篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  1999年   3篇
  1998年   1篇
  1996年   3篇
  1995年   2篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有301条查询结果,搜索用时 15 毫秒
21.
Homing studies have provided tantalizing evidence that the remarkable ability of shearwaters (Procellariiformes) to pinpoint their breeding colony after crossing vast expanses of featureless open ocean can be attributed to their assembling cognitive maps of wind-borne odours but crucially, it has not been tested whether olfactory cues are actually used as a system for navigation. Obtaining statistically important samples of wild birds for use in experimental approaches is, however, impossible because of invasive sensory manipulation. Using an innovative non-invasive approach, we provide strong evidence that shearwaters rely on olfactory cues for oceanic navigation. We tested for compliance with olfactory-cued navigation in the flight patterns of 210 shearwaters of three species (Cory''s shearwaters, Calonectris borealis, North Atlantic Ocean, Scopoli''s shearwaters, C. diomedea Mediterranean Sea, and Cape Verde shearwaters, C. edwardsii, Central Atlantic Ocean) tagged with high-resolution GPS loggers during both incubation and chick rearing. We found that most (69%) birds displayed exponentially truncated scale-free (Lévy-flight like) displacements, which we show are consistent with olfactory-cued navigation in the presence of atmospheric turbulence. Our analysis provides the strongest evidence yet for cognitive odour map navigation in wild birds. Thus, we may reconcile two highly disputed questions in movement ecology, by mechanistically connecting Lévy displacements and olfactory navigation. Our approach can be applied to any species which can be tracked at sufficient spatial resolution, using a GPS logger.  相似文献   
22.
Synopsis The goal of this project was to determine if bat rays, Myliobatis californica, display oriented movements and are thus a viable model species for the further study of geomagnetic topotaxis in elasmobranches. We tracked one male and three female rays during September 1998 and August and September 2001 in Tomales Bay, California. The rays exhibited two modes of travel: (1) rapid and highly directional movements in a straight line along the length of the bay and (2) slow and non-directional movements within small areas. Directional movements were defined as point-to-point vectors in the paths of the bat rays that were oriented in similar directions, and the distribution of these was clustered rather than dispersed and uniform. Mean rates of movement during directional swimming approached 0.5 m s−1. In contrast, vectors in the path of bat rays were at times oriented in varying directions, and a distribution of these was widely dispersed as we would expect if the rays were moving randomly. These were defined as non-directional movements. Oriented straight-line swimming is consistent with the species either being able to orient to the bathymetry of the bay or possessing a compass and (or) piloting sense.  相似文献   
23.
We investigated how the formicine ant Gigantiops destructor can use vector information to navigate within the cluttered environment of the rain forest. Displaced foragers use skylight information to move in the theoretical feeder-to-nest direction, whether they are prevented from updating their path-integrator during foraging or captured at the departure from their nest, i.e. with a current accumulator state very close to zero. Only ants that have collected food are able to download a long-term stored reference vector pointing in the nest direction, irrespective of the current accumulator state of their path-integrator stored in a working memory and independent of familiar landmarks. Depending on the release sites, ants that became lost at a maximum distance of 50 cm could still hit and recognize their familiar route, or they engaged in a systematic search for it centered on the release sites. In contrast to Cataglyphis desert ants, Gigantiops ants do not rely primarily on the current accumulator state of their egocentric path integrator. Such a long-term vector-based navigation primed by food capture is well adapted for a tropical ant foraging during periods spanning several hours. This could prevent the numerous cumulative errors in the evaluation of the angles steered that might result from a continuously running path-integrator operating during complex foraging patterns performed at ground or arboreal levels and during passive displacement in response to heavy rain.  相似文献   
24.
Adult female rats with high levels of circulating estradiol are biased to use a place strategy to solve an ambiguous spatial navigation task and those with low levels are biased to use a response strategy. We examined the development of this hormonal modulation of strategy use by training juvenile female rats on an ambiguous navigation task and probing them for strategy use at postnatal day (PD) 16, 21, or 26, after administration of 17 β-estradiol or oil 48 and 24 h prior to testing. We found that rats could use either strategy successfully by PD21 but that estradiol did not bias rats to use a place strategy until PD26. In order to evaluate the stability of this effect over multiple navigation experiences, we retested oil-treated juveniles three times during adulthood. On the first adult navigation experience, rats were significantly more likely to use the same navigation strategy they used as juveniles, regardless of current estrous cycle phase. On the second and third adult tests, after rats had more experience with the task, previous navigation experience did not predict strategy use. Rats in proestrus were significantly more likely to use a place strategy while rats in estrus and diestrus did not appear to have a group bias to use either strategy. These results suggest that estradiol can modulate spatial navigation strategy use before puberty but that this effect interacts with previous navigation experience. This study sheds light on when and under what circumstances estradiol gains control over spatial navigation behavior in the female rat.  相似文献   
25.
The metacercarial stage of trematodes is typically considered an encysted, developmentally quiescent, resting stage. Yet the metacercariae of some species of strigeoid trematode undergo extravagant development within specific tissues of their second intermediate host. Our understanding of patterns of migration, site selection and development of these types of metacercariae is known for only a few species. In this study, we characterize the invasion and development of Ornithodiplostomum sp. metacercariae in their second intermediate host, the fathead minnow, Pimephales promelas. Diplostomules completed their migration into the abdominal cavity between 15 min and 48 h p.i. Most diplostomules migrated along muscular and connective tissue then penetrated the peritoneal lining of the abdominal cavity en route to the liver or pancreas. Alternatively, some diplostomules migrated within the host’s circulatory system, including the heart and arteries of the hepatic portal system. Metacercarial development in the liver and pancreas involved distinct growth, encystment and consolidation phases. Metacercarial volume increased 15-fold between 48 h and 4 weeks p.i., presumably due to absorptive and/or ingestive feeding activities within host tissues. By 2 weeks p.i., metacercariae were enveloped within a cyst wall and they were found loosely attached to the surfaces of internal tissues or unattached within the body cavity. These results emphasize the complex nature of metacercarial migration and growth and demonstrate that their growth and encystment phases occur within different habitats within their intermediate hosts.  相似文献   
26.
The rotations of nanoscopic magnetic particles, magnetosomes, embedded into the cytoskeleton are considered. Under the influence of thermal disturbances, a great number of magnetosomes are shown to move chaotically between two stable equilibrium positions, in which their magnetic moments are neither parallel nor antiparallel to the static Earth's magnetic field (MF). The random rotations attain the value of order of a radian. The rate of the transitions and the probability of magnetosomes to be in the different states depend on the MF direction with respect to an averaged magnetosome's orientation. This effect explains the ability of migratory animals to orient themselves faultlessly in long term passages in the absence of the direct visibility of optical reference points. The sensitivity to deviation from an "ideal" orientation is estimated to be 2-4 degrees. Possible involvement of the stochastic dynamics of magnetosomes in biological magnetic navigation is discussed.  相似文献   
27.
水面和水下长航对艇员肠道菌群影响的比较及意义探讨   总被引:7,自引:3,他引:4  
比较研究和水下两种长期航行条件对航艇和核潜艇艇员肠道菌群的影响并对其意义进行初步探讨。结果显示两种长航条件均对人体肠道菌群产生显著影响,可打破肠道微生态平衡,但两者所致的肠道菌群构成变化的特点不同。提示不同长航条件可造成不同的微生态失调,需区别对待。  相似文献   
28.
In navigating home, desert ants first run off a global vector estimated on their outbound journey, and then engage in systematic search consisting of ever‐increasing loops interrupted by returns to the starting point of search. Desert ants (Cataglyphis fortis; Wehner, 1983 ) were trained to travel 6 m down a channel to a food source. Different groups of ants were trained to return home in another channel, from distances of 6 m (control), 9 m or 12 m. Ants at the feeder were then tested in a long test channel. The measure of where the ants first turned back on a test gave an estimate of the length of the global vector calculated on their outbound trip. The median distance of search on a 5‐min test gave an estimate of the centre of the search pattern. Relative to controls, the experimental ants did not increase their estimated length of global vector, but changed their search patterns, searching on average further from the start than the controls. Tests of the outbound journey, however, revealed no differences between groups. Desert ants can learn to modify their search pattern based on experience.  相似文献   
29.
An important goal in foraging ecology is to determine how biotic and abiotic variables impact the foraging decisions of wild animals and how they move throughout their multidimensional landscape. However, the interaction of food quality and feeding competition on foraging decisions is largely unknown. Here we examine the importance of food quality in a patch on the foraging decisions of wild vervet monkeys (Chlorocebus pygerythrus) at Lake Nabugabo, Uganda using a multidestination platform array. The overall nutritional composition of the vervet diet was assessed and found to be low in sodium and lipids, thus we conducted a series of experimental manipulations in which the array was varied in salt and oil content. Although vervets prioritized platforms containing key nutrients (i.e., sodium and lipids) overall, we found that solitary vervets prioritized nutrient‐dense platforms more strongly than competing vervets. This finding was opposite to those in a similar experiment that manipulated food site quantity, suggesting that large, salient rewards may be worth competing over but slight differences in nutritional density may be only chosen when there are no potentially negative social consequences (i.e., aggression received). We also found that vervets chose platforms baited with oil‐only, and oil combined with salt, but not salt‐only, suggesting that energy was an important factor in food choice. Our findings demonstrate that when wild vervets detect differences in feeding patches that reflect nutritional composition, they factor these differences into their navigational and foraging decisions. In addition, our findings suggest that these nutritional differences may be considered alongside social variables, ultimately leading to the complex strategies we observed in this study.  相似文献   
30.
Animals use diverse sensory stimuli to navigate their environment and to recognize rewarding food sources.Honey bees use visual atributes of the targeted food source,such as its color,shape,size,direction and distance from the hive,and the landmarks around it to navigate during foraging.They transmit the location information of the food source to other bees if it is highly rewarding.To investigate the relative importance of these attributes,we trained bees to feeders in two different experiments.In the first experiment,we asked whether bees prefer to land on(a)a similar feeder at a different distance on the same heading or on(b)a visually distinct feeder located at the exact same location.We found that,within a short foraging range,bees relied heavily on the color and the shape of the food source and to a lesser extent on its distance from the hive.In the second experiment,we asked if moving the main landmark or the feeder(visual target)influenced recruitment dancing for the feeder.We found that foragers took longer to land and danced fewer circuits when the location of the food source,or a major landmark associated with it,changed.These results demonstrate that prominent visual atributes of food sources and landmarks are evidently more reliable than distance information and that foraging bees heavily utilize these visual cues at the later stages of their journey.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号