首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   4篇
  国内免费   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2016年   2篇
  2015年   4篇
  2014年   8篇
  2013年   13篇
  2012年   20篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   12篇
  2007年   8篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  1999年   1篇
排序方式: 共有106条查询结果,搜索用时 15 毫秒
41.
The sequence of Bcl-2 homology domains, BH1 and BH2, is known to be conserved among anti- and pro-apoptotic members of Bcl-2 family proteins. But structural conservation of these domains with respect to functionally active residues playing role in heterodimerization-mediated regulation of apoptosis has never been elucidated. Here, we have suggested the formation of an active site by structurally conserved residues in BH1 (glycine, arginine) and BH2 (tryptophan) domains of Bcl-2 family members, which also accounts for the functional effect of known mutations in BH1 (G145A, G145E) and BH2 (W188A) domains of Bcl-2.  相似文献   
42.
43.
Doxorubicin and other anthracycline compounds exert their anti-cancer effects by causing DNA damage and initiating cell cycle arrest in cancer cells, followed by apoptosis. DNA damage generally activates a p53-mediated pathway to initiate apoptosis by increasing the level of the BH3-only protein, Puma. However, p53-mediated apoptosis in response to DNA damage has not yet been validated in prostate cancers. In the current study, we used LNCaP and PC3 prostate cancer cells, representing wild type p53 and a p53-null model, to determine if DNA damage activates p53-mediated apoptosis in prostate cancers. Our results revealed that PC3 cells were 4 to 8-fold less sensitive than LNCaP cells to doxorubicin-inuced apoptosis. We proved that the differential response of LNCaP and PC3 to doxorubicin was p53-independent by introducing wild-type or dominant negative p53 into PC3 or LNCaP cells, respectively. By comparing several apoptosis-related proteins in both cell lines, we found that Bcl-xl proteins were much more abundant in PC3 cells than in LNCaP cells. We further demonstrated that Bcl-xl protects LNCaP and PC3 cells from doxorubicin-induced apoptosis by using ABT-263, an inhibitor of Bcl-xl, as a single agent or in combination with doxorubicin to treat LNCaP or PC3 cells. Bcl-xl rather than p53, likely contributes to the differential response of LNCaP and PC3 to doxorubicin in apoptosis. Finally, co-immunoprecipitation and siRNA analysis revealed that a BH3-only protein, Bim, is involved in doxorubicin-induced apoptosis by directly counteracting Bcl-xl.  相似文献   
44.
45.
46.
The chemotherapeutic drug, paclitaxel, induces mitotic arrest and then activates the cellular apoptotic program. Although paclitaxel has been in clinical use for over 10 years for the treatment of breast, ovarian, and lung cancer, the molecular mechanisms of paclitaxel-induced cytotoxicity are ill defined. We decided to investigate the regulatory mechanism of the pro-apoptotic BH3-only protein Bim, which is known to play a role in paclitaxel cytotoxicity. We discovered that paclitaxel induces reversible phosphorylation of Bim. Bim initially displays enhanced phosphorylation during paclitaxel-induced mitotic arrest, and then undergoes de-phosphorylation as cells become apoptotic. This dynamic phosphorylation is dependent on mitotic checkpoint signaling. However, while these results suggest that reversible phosphorylation of Bim may contribute to the transmission of a mitotic checkpoint-to-apoptosis signal, we did not observe a strong correlation between Bim protein levels and cellular sensitivity to paclitaxel. Indeed, in contrast to the well-defined role of Bim in paclitaxel-induced cell death in mouse model cells, our depletion studies demonstrate that Bim is not absolutely required for paclitaxel cytotoxicity in breast cancer cell lines. Clearly it is imperative to define the contribution of Bim in paclitaxel-induced apoptosis of clinically relevant targets in order to rationally develop enhanced treatment strategies.  相似文献   
47.
Glucocorticoids are commonly used in the treatment of various lymphoid malignancies. In the present study, we show that dexamethasone (Dex) induced depolarization of mitochondrial membrane, release of cytochrome c and DNA fragmentation in a human follicular lymphoma cell line, HF28RA. New protein synthesis was required before Dex-induced mitochondrial changes, and the kinetics of the apoptotic events correlated with the upregulation of the Bim protein. Furthermore, we studied whether specific inhibitors of known survival pathways would potentiate Dex-induced apoptosis. Our results show that inhibition of PKC and ERK pathways had no effect on apoptosis. In contrast, inhibition of PI3-kinase or Akt markedly enhanced Dex-induced apoptosis. The enhancement was seen at the mitochondrial level, and the kinetics of apoptosis was notably accelerated. In addition, inhibition of PI3-kinase did not alter levels of Bax, Bcl-2, Bcl-X(L) or Bim proteins in mitochondria but caused translocation of the pro-apoptotic protein Bad to mitochondria. However, inhibition of PI3-kinase-Akt pathway and subsequent translocation of Bad to mitochondria did not induce apoptosis itself. Based on these results and our current understanding of Bim and Bad action, it seems that both proteins play a synergistic role in this process. Thus, these results indicate that inhibitors of PI3-kinase-Akt pathway might be combined in future with glucocorticoids to improve the treatment of lymphoid malignancies.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号