首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1432篇
  免费   28篇
  国内免费   15篇
  1475篇
  2024年   3篇
  2023年   7篇
  2022年   9篇
  2021年   13篇
  2020年   11篇
  2019年   17篇
  2018年   42篇
  2017年   18篇
  2016年   20篇
  2015年   27篇
  2014年   90篇
  2013年   93篇
  2012年   53篇
  2011年   110篇
  2010年   96篇
  2009年   72篇
  2008年   81篇
  2007年   102篇
  2006年   74篇
  2005年   66篇
  2004年   65篇
  2003年   55篇
  2002年   34篇
  2001年   15篇
  2000年   14篇
  1999年   20篇
  1998年   12篇
  1997年   10篇
  1996年   12篇
  1995年   12篇
  1994年   10篇
  1993年   14篇
  1992年   5篇
  1991年   8篇
  1990年   7篇
  1989年   5篇
  1988年   8篇
  1987年   9篇
  1986年   2篇
  1985年   7篇
  1984年   21篇
  1983年   20篇
  1982年   27篇
  1981年   24篇
  1980年   28篇
  1979年   17篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1973年   1篇
排序方式: 共有1475条查询结果,搜索用时 15 毫秒
51.
The unique nature of the most abundant phospholipids in human lens membranes remained overlooked until the 1990s when it was possible to discern dihydrosphingomyelins (DHSMs) from the more common sphingomyelins (SMs). Unlike in other mammalian membranes, DHSMs comprise nearly half of the phospholipids in adult human lenses. Compared to SMs with a trans double bond between carbons 4 and 5 of the sphingoid backbone, the absence of this unsaturation site in DHSMs allows the participation of the OH group on C3 in intermolecular H-bonds and leads to stronger interlipid interactions with both neighboring DHSMs and cholesterol. Phospholipid compositional changes with age and lens region observed in mammals with various life spans and lens growth rates, suggest that the highest levels of DHSMs along with the lowest amounts of phosphatidylcholines and SMs are found in lenses with the lowest growth rate, namely human lenses. The participation of phospholipid metabolites in the control of mitosis and elongation of lens cells is plausible and deserves investigation.  相似文献   
52.
Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2.  相似文献   
53.
嗜酸乳杆菌同化MRS培养基中胆固醇能力的研究   总被引:4,自引:0,他引:4  
目的 对嗜酸乳杆菌在MRS液体培养基中同化胆固醇的能力进行初步研究。方法模拟人体不同胆固醇水平。结果 嗜酸乳杆菌对低胆固醇或正常水平胆固醇同化作用不明显,而对高胆固醇水平的同化作用比较明显。结论 嗜酸乳杆菌具有同化胆固醇的能力。  相似文献   
54.
The hypocholesterolemic effect of taurine was examined in mice fed a high-cholesterol diet containing 1% cholesterol and 0.25% sodium cholate. Male C57BL/6 mice were divided into 3 groups: control group (HC), 1% taurine-supplemented group (HCT+), and taurine-deficient group (HCT-) produced by supplying 0.5% guanidinoethyl sulfonate (GES) solution ad libitum instead of water. After they were fed with the respective diet or drinking water for 4 weeks, the liver taurine level was reduced 80% in the HCT- group compared with that in the HC group, although there was no difference in the serum taurine amount between the two groups. The formation ratio of cholesterol gallstones increased from 71% to 100% by taurine deficiency, and decreased to 0% by taurine supplementation. Compared with the HC group, serum and liver cholesterol significantly decreased, and the excretion of fecal bile acid notably rose in the HCT+ group but tended to lower in the HCT- group. There were no differences in LDL receptor protein level among the three groups. In the subsequent experiment, triglycerides (TG) secretion rate was determined and found to be significantly suppressed by taurine supplementation. In conclusion, it is suggested that taurine does not up-regulate LDL receptor protein level, and the decrease in cholesterol in the circulation is mainly due to its suppressive effect on TG secretion from the liver.  相似文献   
55.
Cytochrome P450 (P450) 7A1 is well known as the cholesterol 7α-hydroxylase, the first enzyme involved in bile acid synthesis from cholesterol. The human enzyme has been reported to have the highest catalytic activity of any mammalian P450. Analyses of individual steps of cholesterol 7α-hydroxylation reaction revealed several characteristics of this reaction: (i) two-step binding of cholesterol to ferric P450, with an apparent K(d) of 0.51 μM, (ii) a rapid reduction rate in the presence of cholesterol (~10 s(-1) for the fast phase), (iii) rapid formation of a ferrous P450-cholesterol-O(2) complex (29 s(-1)), (iv) the lack of a non-competitive kinetic deuterium isotope effect, (v) the lack of a kinetic burst, and (vi) the lack of a deuterium isotope effect when the reaction was initiated with the ferrous P450-cholesterol complex. A minimum kinetic model was developed and is consistent with all of the observed phenomena and the rates of cholesterol 7α-hydroxylation and H(2)O and H(2)O(2) formation. The results indicate that the first electron transfer step, although rapid, becomes rate-limiting in the overall P450 7A1 reaction. This is a different phenomenon compared with other P450s that have much lower rates of catalysis, attributed to the much more efficient substrate oxidation steps in this reaction.  相似文献   
56.
Molecularly imprinted polymers are being increasingly investigated as selective sorbents. For the recovery of cholesterol from aqueous media, the utility of the molecularly imprinted polymers has been limited by modest capacities and selectivities, especially when compared with alternative adsorbents reported for the binding of bile acids [Macromolecules 34 (2001) 1548]. This paper describes the use of cholesterol conjugated monomers and cross-linkers, which bind to the template cholesterol molecule by hydrophobic interactions. This leads to enhanced capacities and selectivities during the recovery of cholesterol from aqueous media. The templating effect is clearly seen in the enhanced capacity and selectivity in the retention of cholesterol vis-a-vis stigmasterol and testosterone.  相似文献   
57.
Smith-Lemli-Opitz syndrome (SLOS), caused by 7-dehydrocholesterol-reductase (DHCR7) deficiency, shows variable severity independent of DHCR7 genotype. To test whether peroxisomes are involved in alternative cholesterol synthesis, we used [1-(14)C]C24:0 for peroxisomal beta-oxidation to generate [1-(14)C]acetyl-CoA as cholesterol precursor inside peroxisomes. The HMG-CoA reductase inhibitor lovastatin suppressed cholesterol synthesis from [2-(14)C]acetate and [1-(14)C]C8:0 but not from [1-(14)C]C24:0, implicating a peroxisomal, lovastatin-resistant HMG-CoA reductase. In SLOS fibroblasts lacking DHCR7 activity, no cholesterol was formed from [1-(14)C]C24:0-derived [1-(14)C]acetyl-CoA, indicating that the alternative peroxisomal pathway also requires this enzyme. Our results implicate peroxisomes in cholesterol biosynthesis but provide no link to phenotypic variation in SLOS.  相似文献   
58.
The anti-cancer drug tamoxifen is a potent inhibitor of lipid peroxidation induced by Fe(III)-ascorbate in ox-brain phospholipid liposomes. Similar anti-oxidant effects, but with varying potencies, are also shown by 4-hydroxytamoxifen, cholesterol, ergosterol and 17-β-oestradiol. We now describe a computer-graphic fitting technique that demonstrates a structural similarity between the five compounds. In addition, we have quantified the differences (relative to cholesterol) between the anti-oxidant activities of the compounds in terms of a novel expression reffered to here as the cholesterol coefficient (Cc) Finally, we discuss how the inhibitory effect of tamoxifen on lipid peroxidation may result from a membrane stabilization that is associated with a decrease in membrane fluidity. This action may be related to the anti-proliferative effect exerted by tamoxifen on cancer and fungal cells.  相似文献   
59.
Intensity of the cholesterol-to-coprostanol conversion in the intestine, as assessed by the coprostanol-to-cholesterol ratio in faeces, was found highly variable among 15 human volunteers, ranging from absent to almost complete cholesterol conversion. The number of coprostanoligenic bacteria in the same faecal samples, as estimated by the most probable number method, was found to be less than 10(6) cellsg-1 of fresh stools in the low-to-inefficient converters and at least 10(8) cellsg-1 of fresh stools in the highest converters, indicating that the population level of cultivable faecal coprostanoligenic bacteria correlated with the intensity of cholesterol-to-coprostanol conversion in the human gut. Microbial communities of the samples were profiled by temporal temperature gradient gel electrophoresis (TTGE) of bacterial 16S rRNA gene amplicons. Dendrogram analysis of the TTGE profiles using the Pearson product moment correlation coefficient and a unweighted pair group method with arithmetic averages (UPGMA) algorithm clearly separated banding patterns from low-to-inefficient and high converters in two different clusters suggesting a relationship between TTGE profiles and coprostanoligenic activity. Principal components analysis further demonstrated that a large subset of bands rather than some individual bands contributed to this clustering.  相似文献   
60.
It has been shown that cholesterol modulates activity of protein kinase C (PKC), and PKC phosphorylates connexin 43 (Cx43) to regulate its function, respectively. However, it is not known whether cholesterol modulates function of Cx43 through regulating activity of PKC. In the present study, we demonstrated that cholesterol enrichment reduced the dye transfer ability of Cx43 in cultured H9c2 cells. Western blot analysis indicated that cholesterol enrichment enhanced the phosphorylated state of Cx43. Immunofluorescent images showed that cholesterol enrichment made the Cx43 distribution from condensed to diffused manner in the interface between the cells. In cholesterol enriched cells, PKC antagonists partially restored the dye transfer ability among the cells, downregulated the phosphorylation of Cx43 and redistributed Cx43 from the diffused manner to the condensed manner in the cell interface. In addition, reduction of cholesterol level suppressed PKC activity to phosphorylate Cx43 and restored Cx43 function in PKC agonist-treated cells. Furthermore, we demonstrated that cholesterol enrichment upregulated the phosphorylated state of Cx43 at Ser368, while PKC antagonists reversed the effect. Taken together, cholesterol level in the cells plays important roles in regulating Cx43 function through activation of the PKC signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号