首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   9篇
  国内免费   3篇
  2023年   4篇
  2022年   6篇
  2021年   4篇
  2020年   9篇
  2019年   4篇
  2018年   11篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   10篇
  2013年   15篇
  2012年   9篇
  2011年   8篇
  2010年   5篇
  2009年   4篇
  2008年   5篇
  2007年   10篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  1997年   5篇
  1993年   1篇
  1992年   1篇
  1988年   3篇
排序方式: 共有142条查询结果,搜索用时 828 毫秒
101.
The zebrafish model is an emerging system for the study of neuromuscular disorders. In the study of neuromuscular diseases, the integrity of the muscle membrane is a critical disease determinant. To date, numerous neuromuscular conditions display degenerating muscle fibers with abnormal membrane integrity; this is most commonly observed in muscular dystrophies. Evans Blue Dye (EBD) is a vital, cell permeable dye that is rapidly taken into degenerating, damaged, or apoptotic cells; in contrast, it is not taken up by cells with an intact membrane. EBD injection is commonly employed to ascertain muscle integrity in mouse models of neuromuscular diseases. However, such EBD experiments require muscle dissection and/or sectioning prior to analysis. In contrast, EBD uptake in zebrafish is visualized in live, intact preparations. Here, we demonstrate a simple and straightforward methodology for performing EBD injections and analysis in live zebrafish. In addition, we demonstrate a co-injection strategy to increase efficacy of EBD analysis. Overall, this video article provides an outline to perform EBD injection and characterization in zebrafish models of neuromuscular disease.  相似文献   
102.
GNE myopathy is a heterogeneous group of ultrarare neuromuscular disorders caused by mutations in the GNE gene. An estimated prevalence of 1~21/1,000,000 leads to a deficiency of data and a lack of availability of samples to conduct clinical research on this neuromuscular disorder. Although GNE, which is the mutated gene responsible for the disease, is well known as the key enzyme in the biosynthesis pathway of sialic acid, the clinicopathological-genetic spectrum of GNE mutant patients is still unclear and expanding. This study presents ten unrelated patients with GNE myopathy, discovering five novel missense mutations. Clinical, electrophysiological, imaging, pathological and genetic data are presented in a retrospective manner. Interestingly, several patients in the cohort were found to have peripheral neuropathy and inflammatory cell infiltration in muscle biopsies, which have seldom been reported. This study, conducted by a neuromuscular centre in China, is the first attempt to highlight these abnormal clinicopathological features and associate them with genetic mutations in GNE myopathy.  相似文献   
103.
Lipid autophagy (lipophagy) is defined as a selective autophagy process in which some intracellular lipid droplets are selectively degraded by autophagic lysosomes pathway. The occurrence of lipophagy was first discovered in liver tissues. Additionally, abundant evidence indicated that the occurrence of hepatic lipophagy has been implicated in many liver diseases including fatty liver diseases, nonalcoholic fatty liver diseases, liver fibrosis, and liver cirrhosis. However, recent studies suggested that hepatic lipophagy occurs not only in liver tissue but also in other nonliver tissues and cells. Furthermore, the occurrence of lipophagy plays a crucial role in nonliver tissues and some related diseases. For instance, lipophagy relieves insulin resistance in adipose tissue from obesity patient with type 2 diabetes. Additionally, lipophagy has the ability to remit neurodegenerative diseases by reducing activity-dependent neurodegeneration in nervous tissue. Lipophagy decreases muscle lipid accumulation and accordingly improves lipid storage myopathy in muscle tissue. Moreover, lipophagy alleviates the malignancy and metastasis of cancer in clear renal cell carcinoma tissue. Lipophagy is also involved in other processes, such as spermatogenesis, osteoblastogenesis, and mucosal ulceration. In conclusion, targeting lipophagy may be a critical regulator and a new therapeutic strategy for nonliver tissues and some related diseases.  相似文献   
104.
Pathological phenotypes in inclusion body myopathy (IBM) associated with Paget disease of the bone (PDB), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) (IBMPFD/ALS) include defective autophagosome and endosome maturation that result in vacuolation, weakness and muscle atrophy. The link between autophagy and IBMPFD/ALS pathobiology has been poorly understood. We examined the AKT-FOXO3 and MTOR pathways to characterize the regulation of autophagy in IBMPFD/ALS mouse muscle. We identified a defect in MTOR signaling that results in enhanced autophagosome biogenesis. Modulating MTOR signaling may therefore be a viable therapeutic target in IBMPFD/ALS.  相似文献   
105.
The Hedgehog (Hh) pathway plays multiple patterning roles during development of the mammalian gastrointestinal tract, but its role in adult gut function has not been extensively examined. Here we show that chronic reduction in the combined epithelial Indian (Ihh) and Sonic (Shh) hedgehog signal leads to mislocalization of intestinal subepithelial myofibroblasts, loss of smooth muscle in villus cores and muscularis mucosa as well as crypt hyperplasia. In contrast, chronic over-expression of Ihh in the intestinal epithelium leads to progressive expansion of villus smooth muscle, but does not result in reduced epithelial proliferation. Together, these mouse models show that smooth muscle populations in the adult intestinal lamina propria are highly sensitive to the level of Hh ligand. We demonstrate further that Hh ligand drives smooth muscle differentiation in primary intestinal mesenchyme cultures and that cell-autonomous Hh signal transduction in C3H10T1/2 cells activates the smooth muscle master regulator Myocardin (Myocd) and induces smooth muscle differentiation. The rapid kinetics of Myocd activation by Hh ligands as well as the presence of an unusual concentration of Gli sties in this gene suggest that regulation of Myocd by Hh might be direct. Thus, these data indicate that Hh is a critical regulator of adult intestinal smooth muscle homeostasis and suggest an important link between Hh signaling and Myocd activation. Moreover, the data support the idea that lowered Hh signals promote crypt expansion and increased epithelial cell proliferation, but indicate that chronically increased Hh ligand levels do not dampen crypt proliferation as previously proposed.  相似文献   
106.
Mutations in the DYSF gene that severely reduce the levels of the protein dysferlin are implicated in muscle-wasting syndromes known as dysferlinopathies. Although studies of its function in skeletal muscle have focused on its potential role in repairing the plasma membrane, dysferlin has also been found, albeit inconsistently, in the sarcoplasm of muscle fibers. The aim of this article is to study the localization of dysferlin in skeletal muscle through optimized immunolabeling methods. We studied the localization of dysferlin in control rat skeletal muscle using several different methods of tissue collection and subsequent immunolabeling. We then applied our optimized immunolabeling methods on human cadaveric muscle, control and dystrophic human muscle biopsies, and control and dysferlin-deficient mouse muscle. Our data suggest that dysferlin is present in a reticulum of the sarcoplasm, similar but not identical to those containing the dihydropyridine receptors and distinct from the distribution of the sarcolemmal protein dystrophin. Our data illustrate the importance of tissue fixation and antigen unmasking for proper immunolocalization of dysferlin. They suggest that dysferlin has an important function in the internal membrane systems of skeletal muscle, involved in calcium homeostasis and excitation-contraction coupling.  相似文献   
107.
Small heat shock proteins form large cytosolic assemblies from an “α-crystallin domain” (ACD) flanked by sequence extensions. Mutation of a conserved arginine in the ACD of several human small heat shock protein family members causes many common inherited diseases of the lens and neuromuscular system. The mutation R120G in αB-crystallin causes myopathy, cardiomyopathy and cataract. We have solved the X-ray structure of the excised ACD dimer of human αB R120G close to physiological pH and compared it with several recently determined wild-type vertebrate ACD dimer structures. Wild-type excised ACD dimers have a deep groove at the interface floored by a flat extended “bottom sheet.” Solid-state NMR studies of large assemblies of full-length αB-crystallin have shown that the groove is blocked in the ACD dimer by curvature of the bottom sheet. The crystal structure of R120G ACD dimer also reveals a closed groove, but here the bottom sheet is flat. Loss of Arg120 results in rearrangement of an extensive array of charged interactions across this interface. His83 and Asp80 on movable arches on either side of the interface close the groove by forming two new salt bridges. The residues involved in this extended set of ionic interactions are conserved in Hsp27, Hsp20, αA- and αB-crystallin sequences. They are not conserved in Hsp22, where mutation of the equivalent of Arg120 causes neuropathy. We speculate that the αB R120G mutation disturbs oligomer dynamics, causing the growth of large soluble oligomers that are toxic to cells by blocking essential processes.  相似文献   
108.
Myofibrillar myopathy caused by FLNC/filamin C mutations is characterized by disintegration of myofibrils and a massive formation of protein aggregates within skeletal muscle fibers. We performed immunofluorescence studies in skeletal muscle sections from filaminopathy patients to detect disturbances of protein quality control mechanisms. Our analyses revealed altered expression of chaperone proteins and components of proteasomal and autophagic degradation pathways in abnormal muscle fibers that harbor protein deposits but not in neighboring muscle fibers without pathological protein aggregation. These findings suggest a dysfunction of protein stabilizing and degrading mechanisms that leads to a pathological accumulation of protein aggregates in abnormal fibers. Accordingly, a pharmacological modulation of chaperone activity may be a promising therapeutic strategy to prevent protein aggregation and to reduce disease progression. Newly established filaminopathy cell culture models provide a suitable basis for testing such pharmacological approaches.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号