首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7412篇
  免费   282篇
  国内免费   113篇
  7807篇
  2024年   6篇
  2023年   56篇
  2022年   85篇
  2021年   126篇
  2020年   113篇
  2019年   181篇
  2018年   173篇
  2017年   137篇
  2016年   134篇
  2015年   176篇
  2014年   322篇
  2013年   454篇
  2012年   270篇
  2011年   347篇
  2010年   206篇
  2009年   303篇
  2008年   359篇
  2007年   368篇
  2006年   326篇
  2005年   277篇
  2004年   279篇
  2003年   255篇
  2002年   230篇
  2001年   173篇
  2000年   171篇
  1999年   174篇
  1998年   163篇
  1997年   149篇
  1996年   151篇
  1995年   156篇
  1994年   148篇
  1993年   132篇
  1992年   133篇
  1991年   136篇
  1990年   127篇
  1989年   113篇
  1988年   96篇
  1987年   71篇
  1986年   88篇
  1985年   93篇
  1984年   91篇
  1983年   53篇
  1982年   52篇
  1981年   53篇
  1980年   26篇
  1979年   16篇
  1978年   19篇
  1977年   8篇
  1976年   8篇
  1972年   8篇
排序方式: 共有7807条查询结果,搜索用时 15 毫秒
41.
Abstract Using ligand binding techniques, we studied α-adrenergic receptors in brains obtained at autopsy from seven histologically normal controls and seven patients with histopathologically verified Alzheimer-type dementia (ATD). Binding of the α-adrenergic antagonists [3H]prazosin and [3H]yohimbine to membranes of human brains exhibited characteristics compatible with α1- and α2-adrenergic receptors, respectively. Binding of both ligands was saturable and reversible, with dissociation constants of 0.15 nM for [3H]prazosin and 5.5 nM for [3H]yohimbine. [3H]Prazosin binding was highest in the hippocampus and frontal cortex and lowest in the caudate and putamen in the control brains. [3H]Yohimbine binding was highest in the nucleus basalis of Meynert (NbM) and frontal cortex and lowest in the caudate and cerebellar hemisphere in the control brains. Compared with values for the controls, [3H]prazosin binding sites were significantly reduced in number in the hippocampus and cerebellar hemisphere, and [3H]yohimbine binding sites were significantly reduced in number in the NbM in the ATD brains. These results suggest that α1 and α2-adrenergic receptors are present in the human brain and that there are significant changes in numbers of both receptors in selected regions in patients with ATD.  相似文献   
42.
Cholinergic processes were measured in motor cortex, hippocampus, and striatum of cats in the terminal stages of GM1 gangliosidosis and compared to those of control cats. The greatest difference observed was elevation in the rate of K+-stimulated release of acetylcholine (ACh) from brain slices prepared from affected cats. The K+-stimulated release of endogenous ACh was increased by 31-43% and of newly synthesized ACh by 19-80% in brain slices from different brain regions. All regions that were examined were affected but the greatest effects occurred in cortex. The rate of synthesis of ACh was elevated in cortical and hippocampal slices. Choline acetyltransferase activity in brain regions of cats with GM1 gangliosidosis was not significantly different from that in controls, whereas high-affinity choline transport in cortical synaptosomes was elevated. Muscarinic receptor binding sites were reduced in the cortex, hippocampus, and striatum of GM1 mutant cats, whereas the apparent affinity was not altered. These results indicate that there are major alterations of cholinergic function in the brains of cats with GM1 gangliosidosis.  相似文献   
43.
[3H]Piflutixol binding to rat striatal membrane preparations identifies both D-1 and D-2 sites. We used [3H]piflutixol to characterise those binding sites present in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS)-solubilised rat striatal preparations. The specific binding of [3H]piflutixol, as defined using cis-flupenthixol, to CHAPS-solubilised rat striatal tissue was saturable and of high affinity. Specific [3H]piflutixol binding to the solubilised preparations was displaced stereoselectively by the isomers of butaclamol and to an equal extent by both cis-flupenthixol and (+/-)-sulpiride. A positive correlation was found between the capacity of a range of drugs to displace [3H]piflutixol binding and the displacement of [3H]spiperone to the same preparations. The Bmax of [3H]piflutixol binding was not different from that of [3H]spiperone binding to the same preparation. These studies suggest that, in contrast to specific binding of membrane preparations, the specific binding of [3H]piflutixol to CHAPS-solubilised preparations involves mainly D-2 sites. Specific [3H]piflutixol binding, in contrast to [3H]spiperone binding, showed only slow dissociation from soluble preparations. The binding of [3H]piflutixol to CHAPS-solubilised preparations was retained during passage through a gel filtration column. This prelabelling of solubilised striatal preparations using [3H]piflutixol may aid in the purification of CHAPS-solubilised rat striatal D-2 sites.  相似文献   
44.
Abstract: A subclone of NG108–15 neuroblastoma-glioma hybrid cells was used to study the intracellular distribution of opioid receptors. Subcellular organelles were separated on self-generating Percoll-sucrose gradients and the enzymes β-glucuronidase, galactosyltransferase, 5′-nucleotidase, and glucose-6-phosphatase were used as markers to localize the various structures. Analysis of the receptor distribution from untreated cells shows that the plasma membranes contained the highest receptor density, but a significant portion of the opioid binding sites was unevenly distributed between the lysosomes, microsomes, and Golgi elements. The enzyme markers indicated that appearance of opioid receptors in these intracellular structures does not result merely from contamination with plasma membranes. About 11% of the receptors appeared in a fraction lighter than plasma membranes. The antilysosomal agent chloroquine altered the intracellular compartmentation of the receptors, possibly by blocking their translocation in the cells. Leu-enkephalin induced time-dependent loss of receptors from all four intracellular compartments examined, but a kinetic analysis showed that the rate of receptor loss in these fractions was not identical. Thus, the percent of receptors appearing in the lysosomal fraction that could still bind [3H]-D-Ala2D-Leu5-enkephalin in vitro was increased on treatment with Leu-enkephalin. As an additional approach to follow the intracellular fate of the receptors, cells were labeled with [3H]diprenorphine, chased with various unlabeled opiates, and the distribution of 3H-ligand-receptors in the cells was monitored. Leu-enkephalin and etorphine altered the distribution of receptor-bound [3H]diprenorphine between the plasma membranes, lysosomes, and Golgi elements, whereas morphine had no such effect. The study sheds light on the role of intracellular structures in the metabolism of opioid receptors in untreated and opioid-treated cells.  相似文献   
45.
[3H]Strychnine binding to rat pons + medulla membranes was used as a measure of glycine receptors or glycine receptor-coupled chloride channels in vitro. A series of compounds structurally related to 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), which previously were shown to antagonize glycine responses in cat spinal cord, inhibited [3H]strychnine binding in micromolar concentrations. The most potent of these glycine antagonists, 5,6,7,8-tetrahydro-4H-isoxazolo[3,4-d]azepin-3-ol (iso-THAZ), was also the most potent inhibitor of [3H]strychnine binding, with a Ki of 1,400 nM. The Ki value for strychnine was 7.0 nM, whereas the Ki value for the mixed gamma-aminobutyric acid (GABA)/glycine antagonist 3 alpha-hydroxy-16-imino-5 beta-17-aza-androstan-11-one (RU 5135) was only 4.6 nM. Sodium chloride (1,000 mM) enhanced the affinity of strychnine, brucine, isostrychnine, and the nonselective GABA antagonist pitrazepin for [3H]strychnine binding sites, whereas the affinities of glycine, beta-alanine, and taurine were reduced. These sodium chloride shifts, however, were not predictive of antagonist or agonist properties, since the sodium chloride shift for the glycine antagonist iso-THAZ and of the other THIP-related antagonists were similar to those of the glycine-like agonists. The various sodium chloride shifts show that different groups of ligands bind to glycine receptor sites in different ways.  相似文献   
46.
Basal and vasoactive intestinal peptide (VIP)-stimulated accumulations of cyclic AMP were measured in slices of rat cerebral cortex. Neither gamma-aminobutyric acid (GABA) nor the selective GABAB receptor agonist (-)-baclofen stimulated basal cyclic AMP accumulation, whereas VIP caused a large dose-dependent increase in cyclic AMP levels. However, in the presence of 100 microM (-)-baclofen, the effects of VIP on cyclic AMP accumulation were significantly enhanced, with the responses to 1 microM and 10 microM VIP being approximately doubled. The enhancing effects of (-)-baclofen was dose related (1-1,000 microM), but an enhancing effect was not observed with 100 microM (+)-baclofen. In the presence of the GABA uptake inhibitor nipecotic acid (1 mM), GABA caused a similar dose-related enhancement of the VIP response. The ability of either GABA or (-)-baclofen to augment VIP-stimulated production of cyclic AMP was not mimicked by the GABAA, agonists isoguvacine and 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) and was not antagonized by the GABAA antagonist bicuculline. The putative GABAB antagonist 5-aminovaleric acid (1 mM) significantly reduced the effect of (-)-baclofen. The ability of (-)-baclofen to enhance VIP-stimulated accumulation of cyclic AMP was observed in slices of rat cerebral cortex, hippocampus, and hypothalamus. These results indicate that GABA and (-)-baclofen can enhance VIP-stimulated accumulation of cyclic AMP in rat brain slices via an interaction with specific GABAB receptors.  相似文献   
47.
Previous evidence has suggested that brain catecholamine levels are important in the regulation of central angiotensin II receptors. In the present study, the effects of norepinephrine and 3,4-dihydroxyphenylethylamine (dopamine) on angiotensin II receptor regulation in neuronal cultures from rat hypothalamus and brainstem have been examined. Both catecholamines elicit significant decreases in [125I]angiotensin II-specific binding to neuronal cultures prepared from normotensive rats, effects that are dose dependent and that are maximal within 4-8 h of preincubation. Saturation and Scatchard analyses revealed that the norepinephrine-induced decrease in the binding is due to a decrease in the number of angiotensin II receptors in neuronal cultures, with little effect on the receptor affinity. Norepinephrine has no significant actions on [125I]angiotensin II binding in cultures prepared from spontaneously hypertensive rats. The downregulation of angiotensin II receptors by norepinephrine or dopamine is blocked by alpha 1-adrenergic and not by other adrenergic antagonists, a result suggesting that this effect is initiated at the cell surface involving alpha 1-adrenergic receptors. This is further supported by our data indicating a parallel downregulation of specific alpha 1-adrenergic receptors elicited by norepinephrine. In summary, these results show that norepinephrine and dopamine are able to alter the regulation of neuronal angiotensin II receptors by acting at alpha 1-adrenergic receptors, which is a novel finding.  相似文献   
48.
Summary A plant root observation chamber (rhizotron) was designed to examine soil-grown roots under a stereomicroscope and to sample roots and soil during the growth period of a pot study. The mini-rhizotrons are inexpensive to construct and are suitable for replicated, multitreatment experiments. Illustrative data on root hair and lateral development are presented for seedlings of four crop species.Vermont Agric. Exp. Stn. Journal Article No 572.  相似文献   
49.
When rat brain membranes were incubated with [3H]flunitrazepam in the presence of UV light, predominantly one protein (P51) was irreversibly labeled in cerebellum and at least two proteins (P51 and P55) were labeled in hippocampus. On digestion of membranes with increasing concentrations of trypsin up to 40% of radioactivity irreversibly bound to proteins was removed from the membranes. In addition, P51 was nearly completely degraded to a peptide with apparent molecular weight 39,000 and this peptide was further degraded to a peptide with apparent molecular weight 25,000. In contrast, protein P55 was only partially degraded by trypsin and yielded two proteolytic peptides with apparent molecular weights 42,000 and 45,000 which seemed to be rather stable against further attack by trypsin. Membranes treated with trypsin still had the capacity to bind [3H]-flunitrazepam reversibly with an affinity similar to that of membranes not previously treated with trypsin. When these membranes were irradiated with UV light, the same proteolytic peptides were detected as in membranes first photolabeled and then digested with trypsin. These results suggest a close association between reversible and irreversible benzodiazepine binding sites and indicate that membrane-associated proteins P51 and P55 are differentially protected against degradation by trypsin.  相似文献   
50.
Solubilization of an Adenosine Uptake Site in Brain   总被引:1,自引:1,他引:0  
Procedures are described for the solubilization of adenosine uptake sites in guinea pig and rat brain tissue. Using [3H]nitrobenzylthioinosine [( 3H]NBI) the solubilized site is characterized both kinetically and pharmacologically. The binding is dependent on protein concentration and is saturable, reversible, specific, and high affinity in nature. The KD and Bmax of guinea pig extracts are 0.13 +/- 0.02 nM and 133 +/- 18 fmol/mg protein, respectively, with linear Scatchard plots obtained routinely. Similar kinetic parameters are observed in rat brain. Adenosine uptake inhibitors are the most potent inhibitors of [3H]NBI binding with the following order of potency, dilazep greater than hexobendine greater than dipyridamole. Adenosine receptor ligands are much less potent inhibitors of binding, and caffeine is without effect. The solubilized adenosine uptake site is, therefore, shown to have virtually identical properties to the native membrane site. The binding of the adenosine A1 receptor agonist [3H]cyclohexyladenosine [( 3H]CHA) to the solubilized brain extract was also studied and compared with that of [3H]NBI. In contrast to the [3H]NBI binding site [3H]CHA binds to two apparent populations of adenosine receptor, a high-affinity site with a KD of 0.32 +/- 0.06 nM and a Bmax of 105 +/- 30 fmol/mg protein and a lower-affinity site with a KD of 5.50 +/- 0.52 nM and Bmax of 300 +/- 55 fmol/mg protein. The pharmacology of the [3H]CHA binding site is consistent with that of the adenosine receptor and quite distinct from that of the uptake [( 3H]NBI binding) site. Therefore, we show that the adenosine uptake site can be solubilized and that it retains both its binding and pharmacologic properties in the solubilized state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号