首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1605篇
  免费   149篇
  国内免费   233篇
  2024年   6篇
  2023年   22篇
  2022年   35篇
  2021年   36篇
  2020年   52篇
  2019年   73篇
  2018年   64篇
  2017年   72篇
  2016年   92篇
  2015年   60篇
  2014年   74篇
  2013年   82篇
  2012年   64篇
  2011年   69篇
  2010年   73篇
  2009年   96篇
  2008年   91篇
  2007年   123篇
  2006年   96篇
  2005年   77篇
  2004年   61篇
  2003年   62篇
  2002年   64篇
  2001年   43篇
  2000年   42篇
  1999年   37篇
  1998年   37篇
  1997年   25篇
  1996年   20篇
  1995年   33篇
  1994年   31篇
  1993年   20篇
  1992年   16篇
  1991年   21篇
  1990年   20篇
  1989年   12篇
  1988年   13篇
  1987年   6篇
  1986年   8篇
  1985年   11篇
  1984年   6篇
  1983年   5篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1978年   5篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1958年   2篇
排序方式: 共有1987条查询结果,搜索用时 31 毫秒
991.
In situ paired light and dark-stirred benthic flux chambers were used to estimate dissolved oxygen flux across the sediment–water interface in Lake Mývatn, Iceland. Three sampling stations were selected, each station reflecting a specific sedimentary environment, benthic communities, and water depth. During this study the phytoplankton density was low. Spatial and seasonal variations of bottom DO concentration and DO flux have been observed during this study. The oxygen consumption rate at all study sites had a mean of –89 (±44) mmol m–2 d–1 while the oxygen production rate due to benthic algae had a mean of 131 (±103) mmol m–2 d–1. There was a strong correlation (r=0.91) between oxygen consumption rate and temperature. This was presumably because of the temperature influence on rates of microbial and macrobenthic processes. The mean benthic primary production rate at all study sites was 1216 (±957) mg C m–2 d–1 between June 2000 and February 2001. Annual gross benthic primary production was estimated from the gross mean daily benthic DO production (P) and Redfield's C:O2 ratio of 106:138 to be 420 g C m–2 y–1 at station HO, 250 g C m–2 y–1 at B2 and 340 g C m–2 y–1 at station 95. Thus, the mean gross benthic primary production was estimated as 1151 mg C m–2 d–1 at station HO, 685 mg C m–2 d–1 at station B2, and 932 mg C m–2 d–1 at station 95.  相似文献   
992.
During an open-water disposal of about 710,000 m3 of harbour sludge in the polyhaline zone of the Weser estuary, Germany, a monitoring programme was carried out to investigate the impact on benthic invertebrates. The macrofaunal communities of four sites within the disposal area and five sites in a reference area were compared after discharge. The location and extent of the potentially affected area were inferred from a morphodynamic computer model (TIMOR 3; Zanke 1998). Disposal effects were analysed by comparing species numbers, densities, diversity and faunal similarity using multivariate methods. A loss of diversity and a decline in the abundance of several species in the disposal area were measured. The species number was reduced up to 50% and important habitat structures were absent from the disposal area. Several benthic species were affected by the disposal. The importance of species such as Mytilus edulis (Mollusca) and Lanice conchilega (Polychaeta) for the diversity of the community, and the sensitivity of these species to sediment discharge are analysed. The difficulties of separating dumping effects from natural variation in a dynamic estuarine channel system are discussed.Communicated by H.-D. Franke  相似文献   
993.
Food selectivity and the mechanisms of food selection were analyzed by video microscopy for three species (Spumella, Ochromonas, Cafeteria) of interception-feeding heterotrophic nanoflagellates. The fate of individual prey particles, either live bacteria and/or inert particles, was recorded during the different stages of the particle-flagellate-interaction, which included capture, ingestion, digestion, and egestion. The experiments revealed species-specific differences and new insights into the underlying mechanisms of particle selection by bacterivorous flagellates. When beads and bacteria were offered simultaneously, both particles were ingested unselectively at similar rates. However, the chrysomonads Spumella and Ochromonas egested the inert beads after a vacuole passage time of only 2-3 min, which resulted in an increasing proportion of bacteria in the food vacuoles. Vacuole passage time for starved flagellates was significantly longer compared to that of exponential-phase flagellates for Spumella and Ochromonas. The bicosoecid Cafeteria stored all ingested particles, beads as well as bacteria, in food vacuoles for more then 30 min. Therefore "selective digestion" is one main mechanism responsible for differential processing of prey particles. This selection mechanism may explain some discrepancies of former experiments using inert particles as bacterial surrogates for measuring bacterivory.  相似文献   
994.
In order to assess the impact of crustacean zooplankton on phytoplankton and protozoan ciliates in the Sahela reservoir under semi-arid climate, we conducted experiments during the period from July to December 1999 at the deepest point in the lake (15 m). Samplings and measurements were carried out in diffusion chambers submerged in situ over a period of 7 h without (control chambers) and with (experimental chambers) crustacean zooplankton. During these experiments, counts were conducted on phytoplankton and ciliates to determine the abundance and the mortality of these organisms due to zooplankton in each diffusion chambers at t = 0 and t = 7 h of incubation. The study showed that the growth rates of phytoplankton and ciliates populations varied between 0.02 and 0.05 h-1 and from 0.01 to 0.07 h-1, respectively. The mortality caused by zooplankton grazing fluctuated from 0.07 to 0.2 h-1 of phytoplankton and from 0.01 to 0.2 h-1 of ciliates. These mortalities were significantly and positively correlated with the growth rates (r = 0.8; p < 0.02; n = 9). Moreover, the heavy predation by the crustacean zooplankton was exerted on small-sized phytoplankton and ciliates and we demonstrated the relationships between protozoans and zooplankton for the transfer of matter and energy in aquatic food webs. Furthermore, the crustacean zooplankton metabolism was different, whether zooplankton was present in diffusion chambers or in the lake.  相似文献   
995.
For an algal bloom to develop, the growth rate of the bloom-forming species must exceed the sum of all loss processes. Among these loss processes, grazing is generally believed to be one of the more important factors. Based on numerous field studies, it is now recognized that microzooplankton are dominant consumers of phytoplankton in both open ocean and coastal waters. Heterotrophic protists, a major component of microzooplankton communities, constitute a vast complex of diverse feeding strategies and behavior which allow them access to even the larger phytoplankton species. A number of laboratory studies have shown the capability of different protistan species to feed and grow on bloom-forming algal species. Because of short generation times, their ability for fast reaction to short-term variation in food conditions enables phagotrophic protists to fulfill the function of a heterotrophic buffer, which might balance the flow of matter in case of phytoplankton blooms. The importance of grazing as a control of microalgae becomes most apparent by its failure; if community grazing controls initial stages of bloom development, there simply is no bloom. However, if a certain algal species is difficult to graze, e.g. due to specific defense mechanisms, reduced grazing pressure will certainly favor bloom development. The present contribution will provide a general overview on the interactions between planktonic microalgae and protozoan grazers with special emphasis on species-specific interactions and algal defense strategies against protozoan grazers.  相似文献   
996.
The pattern and process of seasonal changes in an intertidal annual algal assemblage were examined at Hiura, northern Japan. Short-term field experiments (<2months duration) were set up to quantify the effects of both grazing and pre-emption on species replacement in the assemblage in three different seasons. An 8-month field experiment was set up to quantify long-term effects, including the indirect effects of both grazing and competitive dominance on the community structure. Results suggested that seasonal change in the algal assemblage resulted from the interaction of abiotic environmental change, competition and grazing. The relative contribution of these factors varied within a short period, presumably as a result of seasonal changes in physical environmental stress, free space availability and grazing pressure. From February to March, when grazer density was low and there was much free space available for algae, the dominant species shifted from foliose green alga Monostroma angicava to filamentous red alga Bangia atropurpurea, because B.atropurpurea grew faster than M.angicava. This species replacement was not influenced strongly by biological interaction but by temporal changes in abiotic environmental conditions. From April to mid May, when there was less free space available for algae in the natural community, the dominant B.atropurpurea decreased with increasing foliose red alga Porphyra yezoensis, because only P.yezoensis was able to invade an area pre-empted by algae. Grazing did not affect this species replacement. After mid May, the two dominant species, P.yezoensis and B.atropurpurea, decreased. Their decline was mainly caused by desiccation stress and was partially affected by grazing.  相似文献   
997.
Seasonal change in the abundance of autotrophic picoplankton (APP) was investigated once or twice a week in relation to some environmental variables in a hypereutrophic pond, from July 1999 to June 2000. Cell density of APP ranged between 0.3×105 and 10.1×105 cells ml–1, overlapping the lower range of APP abundances given in the literature for hypereutrophic systems. The pattern of seasonal change in concentration of dissolved inorganic phosphorus (0.3–20.3 mol P l–1) was similar to that of cell density of APP, suggesting that phosphorus limitation on APP abundance. By contrast, nitrogen limitation seemed unlikely since the pattern of seasonal change in concentration of dissolved inorganic nitrogen was different from that of APP cell density. We could not find any coupled oscillations between APP abundance and heterotrophic nanoflagellates, or between that of APP and ciliates. The dominant ciliate taxa, based on their cell densities, were Cinetochilum margaritaceum, Cyclidium glaucoma, Halteria grandinella, Strobilidium sp. and Urotricha spp. The relative contribution of the <2 m fraction to total chlorophyll concentration was seasonally high (up to 16.2%), indicating seasonal importance of APP abundance as food for heterotrophs.  相似文献   
998.
Temporal changes of biomass and dominant species in benthic algal communities were investigated in a littoral sand-beach zone in the north basin of Lake Biwa from December 1999 to September 2000. Chlorophyll-a amounts of benthic algal communities per unit area of the sandy sediments rapidly increased from late April to June. Increases in biomass of the benthic algal communities are considered to result from the propagation of filamentous green algae Oedogonium sp. and Spirogyra sp. The cell numbers of filamentous green algae and chlorophyll-a amounts of benthic algal communities at depths of 30 and 50cm at a station protected by a breakwater in May were significantly higher than those of a station exposed directly to wave activity. Thus, the biomass accumulation of the benthic algal communities seems to be regulated strongly by wave disturbance. The development of filamentous green algae may contribute to the increase in biomass of the benthic algal community and to the changes in seasonal patterns of biomass in the sand-beach zone of Lake Biwa. We consider that the development of the filamentous green algal community in the littoral zone of Lake Biwa is the result of eutrophication.  相似文献   
999.
  • 1 We measured the abundance and biomass of filter‐feeding microcrustacean zooplankton and calculated their grazing impact on phytoplankton biomass during summer in five shallow, mesotrophic to eutrophic lakes. For three of the lakes data exist both from years with dense submerged vegetation and low turbidity (the clearwater state), as well as from years characterised by sparse vegetation and high turbidity (the turbid state). In the other two lakes data are available only for clearwater conditions.
  • 2 In all lakes conditions of dense vegetation and clear water coincided with a low abundance of crustacean plankton during summer. In the three lakes that shifted, the calculated biovolume ingested by crustacean plankton (filtering rate) was 3–11 times lower during clearwater conditions compared with turbid conditions. Because phytoplankton biomass was lower during clearwater conditions, however, daily grazing pressure from microcrustacea (expressed as percentage of phytoplankton biomass) did not differ between states. In three of the five lakes, grazers were estimated to take less than 10% of the phytoplankton biomass per day, indicating filtration by zooplankton was not the most important mechanism to maintain clearwater conditions.
  • 3 High densities of Cladocera were found in three of the lakes within dense stands of Charophyta. However, these samples were dominated by plant‐associated taxa that even during the night were rarely found outside the vegetation. This indicates that plant‐associated zooplankton has no major influence on the maintenance of water clarity outside the vegetation.
  • 4 Spring peak abundance of Cladocera was observed in three of the lakes. In two of these, where seasonal development was studied in both the clearwater and the turbid state, spring peaks were lower during the clearwater state.
  • 5 Predation, low food availability or a combination of both may explain the low zooplankton densities. Phytoplankton may be limited by low phosphorus availability in the lakes dominated by Charophyta. Our results indicate that the importance of zooplankton grazing may have minor importance for the maintenance of the clearwater state in lakes with dense, well‐established submerged vegetation.
  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号