首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3282篇
  免费   649篇
  国内免费   2080篇
  2024年   58篇
  2023年   242篇
  2022年   219篇
  2021年   322篇
  2020年   313篇
  2019年   351篇
  2018年   258篇
  2017年   267篇
  2016年   294篇
  2015年   242篇
  2014年   244篇
  2013年   240篇
  2012年   211篇
  2011年   214篇
  2010年   199篇
  2009年   249篇
  2008年   209篇
  2007年   270篇
  2006年   231篇
  2005年   202篇
  2004年   164篇
  2003年   144篇
  2002年   131篇
  2001年   123篇
  2000年   96篇
  1999年   72篇
  1998年   85篇
  1997年   37篇
  1996年   63篇
  1995年   33篇
  1994年   29篇
  1993年   24篇
  1992年   42篇
  1991年   24篇
  1990年   27篇
  1989年   14篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1985年   10篇
  1984年   6篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1977年   2篇
  1976年   3篇
  1974年   1篇
  1958年   8篇
排序方式: 共有6011条查询结果,搜索用时 15 毫秒
21.
Large grazers (megaherbivores) have a profound impact on ecosystem functioning. However, how ecosystem multifunctionality is affected by changes in megaherbivore populations remains poorly understood. Understanding the total impact on ecosystem multifunctionality requires an integrative ecosystem approach, which is especially challenging to obtain in marine systems. We assessed the effects of experimentally simulated grazing intensity scenarios on ecosystem functions and multifunctionality in a tropical Caribbean seagrass ecosystem. As a model, we selected a key marine megaherbivore, the green turtle, whose ecological role is rapidly unfolding in numerous foraging areas where populations are recovering through conservation after centuries of decline, with an increase in recorded overgrazing episodes. To quantify the effects, we employed a novel integrated index of seagrass ecosystem multifunctionality based upon multiple, well-recognized measures of seagrass ecosystem functions that reflect ecosystem services. Experiments revealed that intermediate turtle grazing resulted in the highest rates of nutrient cycling and carbon storage, while sediment stabilization, decomposition rates, epifauna richness, and fish biomass are highest in the absence of turtle grazing. In contrast, intense grazing resulted in disproportionally large effects on ecosystem functions and a collapse of multifunctionality. These results imply that (i) the return of a megaherbivore can exert strong effects on coastal ecosystem functions and multifunctionality, (ii) conservation efforts that are skewed toward megaherbivores, but ignore their key drivers like predators or habitat, will likely result in overgrazing-induced loss of multifunctionality, and (iii) the multifunctionality index shows great potential as a quantitative tool to assess ecosystem performance. Considerable and rapid alterations in megaherbivore abundance (both through extinction and conservation) cause an imbalance in ecosystem functioning and substantially alter or even compromise ecosystem services that help to negate global change effects. An integrative ecosystem approach in environmental management is urgently required to protect and enhance ecosystem multifunctionality.  相似文献   
22.
Increased meteorological drought intensity with rising atmospheric demand for water (hereafter vapor pressure deficit [VPD]) increases the risk of tree mortality and ecosystem dysfunction worldwide. Ecosystem-scale water-use strategy is increasingly recognized as a key factor in regulating drought-related ecosystem responses. However, the link between water-use strategy and ecosystem vulnerability to meteorological droughts is poorly established. Using the global flux observations, historic hydroclimatic data, remote-sensing products, and plant functional-trait archive, we identified potentially vulnerable ecosystems, examining how ecosystem water-use strategy, quantified by the percentage bias (δ) of the empirical canopy conductance sensitivity to VPD relative to the theoretical value, mediated ecosystem responses to droughts. We found that prevailing soil water availability substantially impacted δ in dryland regions where ecosystems with insufficient soil moisture usually showed conservative water-use strategy, while ecosystems in humid regions exhibited more pronounced climatic adaptability. Hyposensitive and hypersensitive ecosystems, classified based on δ falling below or above the theoretical sensitivity, respectively, achieved similar net ecosystem productivity during droughts, employing different structural and functional strategies. However, hyposensitive ecosystems, risking their hydraulic system with a permissive water-use strategy, were unable to recover from droughts as quickly as hypersensitive ones. Our findings highlight that processed-based models predicting current functions and future performance of vegetation should account for the greater vulnerability of hyposensitive ecosystems to intensifying atmospheric and soil droughts.  相似文献   
23.
Trends and ecological consequences of phosphorus (P) decline and increasing nitrogen (N) to phosphorus (N:P) ratios in rivers and estuaries are reviewed and discussed. Results suggest that re-oligotrophication is a dominant trend in rivers and estuaries of high-income countries in the last two–three decades, while in low-income countries widespread eutrophication occurs. The decline in P is well documented in hundreds of rivers of United States and the European Union, but the biotic response of rivers and estuaries besides phytoplankton decline such as trends in phytoplankton composition, changes in primary production, ecosystem shifts, cascading effects, changes in ecosystem metabolism, etc., have not been sufficiently monitored and investigated, neither the effects of N:P imbalance. N:P imbalance has significant ecological effects that need to be further investigated. There is a growing number of cases in which phytoplankton biomass have been shown to decrease due to re-oligotrophication, but the potential regime shift from phytoplankton to macrophyte dominance described in shallow lakes has been documented only in a few rivers and estuaries yet. The main reasons why regime shifts are rarely described in rivers and estuaries are, from one hand the scarcity of data on macrophyte cover trends, and from the other hand physical factors such as peak flows or high turbidity that could prevent a general spread of submerged macrophytes as observed in shallow lakes. Moreover, re-oligotrophication effects on rivers may be different compared to lakes (e.g., lower dominance of macrophytes) or estuaries (e.g., limitation of primary production by N instead of P) or may be dependent on river/estuary type. We conclude that river and estuary re-oligotrophication effects are complex, diverse and still little known, and in some cases are equivalent to those described in shallow lakes, but the regime shift is more likely to occur in mid to high-order rivers and shallow estuaries.  相似文献   
24.
Soil and atmospheric droughts increasingly threaten plant survival and productivity around the world. Yet, conceptual gaps constrain our ability to predict ecosystem-scale drought impacts under climate change. Here, we introduce the ecosystem wilting point (ΨEWP), a property that integrates the drought response of an ecosystem's plant community across the soil–plant–atmosphere continuum. Specifically, ΨEWP defines a threshold below which the capacity of the root system to extract soil water and the ability of the leaves to maintain stomatal function are strongly diminished. We combined ecosystem flux and leaf water potential measurements to derive the ΨEWP of a Quercus-Carya forest from an “ecosystem pressure–volume (PV) curve,” which is analogous to the tissue-level technique. When community predawn leaf water potential (Ψpd) was above ΨEWP (=−2.0 MPa), the forest was highly responsive to environmental dynamics. When Ψpd fell below ΨEWP, the forest became insensitive to environmental variation and was a net source of carbon dioxide for nearly 2 months. Thus, ΨEWP is a threshold defining marked shifts in ecosystem functional state. Though there was rainfall-induced recovery of ecosystem gas exchange following soaking rains, a legacy of structural and physiological damage inhibited canopy photosynthetic capacity. Although over 16 growing seasons, only 10% of Ψpd observations fell below ΨEWP, the forest is commonly only 2–4 weeks of intense drought away from reaching ΨEWP, and thus highly reliant on frequent rainfall to replenish the soil water supply. We propose, based on a bottom-up analysis of root density profiles and soil moisture characteristic curves, that soil water acquisition capacity is the major determinant of ΨEWP, and species in an ecosystem require compatible leaf-level traits such as turgor loss point so that leaf wilting is coordinated with the inability to extract further water from the soil.  相似文献   
25.
Ecosystem management in the face of global change requires understanding how co-occurring threats affect species and communities. Such an understanding allows for effective management strategies to be identified and implemented. An important component of this is differentiating between factors that are within (e.g. invasive predators) or outside (e.g. drought, large wildfires) of a local manager's control. In the global biodiversity hotspot of south-western Australia, small- and medium-sized mammal species are severely affected by anthropogenic threats and environmental disturbances, including invasive predators, fire, and declining rainfall. However, the relative importance of different drivers has not been quantified. We used data from a long-term monitoring program to fit Bayesian state-space models that estimated spatial and temporal changes in the relative abundance of four threatened mammal species: the woylie (Bettongia penicillata), chuditch (Dasyurus geoffroii), koomal (Trichosurus vulpecula) and quenda (Isoodon fusciventor). We then use Bayesian structural equation modelling to identify the direct and indirect drivers of population changes, and scenario analysis to forecast population responses to future environmental change. We found that habitat loss or conversion and reduced primary productivity (caused by rainfall declines) had greater effects on species' spatial and temporal population change than the range of fire and invasive predator (the red fox Vulpes vulpes) management actions observed in the study area. Scenario analysis revealed that a greater extent of severe fire and further rainfall declines predicted under climate change, operating in concert are likely to further reduce the abundance of these species, but may be mitigated partially by invasive predator control. Considering both historical and future drivers of population change is necessary to identify the factors that risk species recovery. Given that both anthropogenic pressures and environmental disturbances can undermine conservation efforts, managers must consider how the relative benefit of conservation actions will be shaped by ongoing global change.  相似文献   
26.
The decomposition of litter and the supply of nutrients into and from the soil are two fundamental processes through which the above- and belowground world interact. Microbial biodiversity, and especially that of decomposers, plays a key role in these processes by helping litter decomposition. Yet the relative contribution of litter diversity and soil biodiversity in supporting multiple ecosystem services remains virtually unknown. Here we conducted a mesocosm experiment where leaf litter and soil biodiversity were manipulated to investigate their influence on plant productivity, litter decomposition, soil respiration, and enzymatic activity in the littersphere. We showed that both leaf litter diversity and soil microbial diversity (richness and community composition) independently contributed to explain multiple ecosystem functions. Fungal saprobes community composition was especially important for supporting ecosystem multifunctionality (EMF), plant production, litter decomposition, and activity of soil phosphatase when compared with bacteria or other fungal functional groups and litter species richness. Moreover, leaf litter diversity and soil microbial diversity exerted previously undescribed and significantly interactive effects on EMF and multiple individual ecosystem functions, such as litter decomposition and plant production. Together, our work provides experimental evidence supporting the independent and interactive roles of litter and belowground soil biodiversity to maintain ecosystem functions and multiple services.  相似文献   
27.
A significant increase in reactive nitrogen (N) added to terrestrial ecosystems through agricultural fertilization or atmospheric deposition is considered to be one of the most widespread drivers of global change. Modifying biomass allocation is one primary strategy for maximizing plant growth rate, survival, and adaptability to various biotic and abiotic stresses. However, there is much uncertainty as to whether and how plant biomass allocation strategies change in response to increased N inputs in terrestrial ecosystems. Here, we synthesized 3516 paired observations of plant biomass and their components related to N additions across terrestrial ecosystems worldwide. Our meta-analysis reveals that N addition (ranging from 1.08 to 113.81 g m−2 year−1) increased terrestrial plant biomass by 55.6% on average. N addition has increased plant stem mass fraction, shoot mass fraction, and leaf mass fraction by 13.8%, 12.9%, and 13.4%, respectively, but with an associated decrease in plant reproductive mass (including flower and fruit biomass) fraction by 3.4%. We further documented a reduction in plant root-shoot ratio and root mass fraction by 27% (21.8%–32.1%) and 14.7% (11.6%–17.8%), respectively, in response to N addition. Meta-regression results showed that N addition effects on plant biomass were positively correlated with mean annual temperature, soil available phosphorus, soil total potassium, specific leaf area, and leaf area per plant. Nevertheless, they were negatively correlated with soil total N, leaf carbon/N ratio, leaf carbon and N content per leaf area, as well as the amount and duration of N addition. In summary, our meta-analysis suggests that N addition may alter terrestrial plant biomass allocation strategies, leading to more biomass being allocated to aboveground organs than belowground organs and growth versus reproductive trade-offs. At the global scale, leaf functional traits may dictate how plant species change their biomass allocation pattern in response to N addition.  相似文献   
28.
Sea urchin overgrazing has caused widespread phase shifts from kelp forests to “urchin barrens” on many temperate reefs, reducing habitat complexity, productivity, and biodiversity. Sea urchin removal is increasingly used for kelp restoration; however, few studies have quantified the efficiency and effectiveness of different removal methods, resulting in limited understanding of their practicality. In this study, the efficiency (removal rate) and effectiveness (proportion removed) of four removal methods were evaluated in northeastern New Zealand. We compared culling or collecting sea urchins by either SCUBA or freediving in 128 small-scale plots (25 m2). We also evaluated the efficiency and effectiveness of culling in four large (1.6–2 ha) barren areas, scales relevant for restoration. On average, culling sea urchins was 1.9–4.4 times faster than collecting, and SCUBA was 1.5–3.3 times faster than freediving. Removal rates increased with sea urchin density, especially for culling on SCUBA, while freediving removal rates increased with experience. Effectiveness was lower in large-scale removals (86–93% of sea urchins ≥40 mm removed) compared to small-scale removals (98–99%), but sufficient for restoration objectives. Estimated time per area (using SCUBA culling) was similar across large-scale removals (49–57 hours/ha), despite an almost 2-fold variation in initial sea urchin densities (approximately 4–8 urchins/m2), suggesting area may better predict total removal time than simply number of sea urchins across low-density ranges. While sea urchin removal provides a rapid, feasible, and effective approach to restoring kelp in urchin barrens, restoration plans need to also address the causes of sea urchin overpopulation to ensure long-term benefits.  相似文献   
29.
The strategy of the United Nations Decade on Ecosystem Restoration identifies three pathways for action for overcoming six global barriers thought to hamper upscaling. We evaluated 6,023 peer-reviewed and gray literature papers published over the last two decades to map the information landscape underlying the barriers and associated pathways for action across world regions, terrestrial ecosystem types, restorative interventions and their outcomes. Overall, the literature addressed more the financial and legislative barriers than the technical and research-related ones, supporting the view that social, economic and political factors hamper scaling up ecosystem restoration. Latin America, Africa, and North America were the most prominent regions in the literature, yet differed in the number of publications addressing each barrier. An overwhelming number of publications focused on forests (78%), while grasslands (6%), drylands (3%), and mangroves (2%) received less attention. Across the three pathways for action, the action lines on (1) promoting long-term ecosystem restoration actions and monitoring and (2) education on restoration were the most underrepresented in the literature. In general, restorative interventions assessed rendered positive outcomes except those of a political, legislative or financial nature which reported negative or inconclusive outcomes. Our indicative assessment reveals critical information gaps on barriers, pathways, and types of restorative interventions across world regions, particularly related to specific social issues such as education for ecosystem restoration. Finally, we call for refining “strength of evidence” assessment frameworks that can systematically appraise, synthesize and integrate information on traditional and practitioner knowledge as two essential components for improving decision-making in ecosystem restoration.  相似文献   
30.

Questions

Rhododendron ponticum subsp. baeticum is an invasive shrub of growing concern in continental Europe, but little is known about its impact on native plant communities. Here we ask: do environmental conditions differ between forest stands invaded by it and uninvaded stands? Do these differences correlate with R. ponticum's cover? Are these differences associated with differences in taxonomic and functional diversity of vascular plant species of the herb layer? Can these vegetation changes be explained by the sorting of certain life-history traits by R. ponticum-induced environmental changes?

Location

Several forests invaded by R. ponticum in the French Atlantic domain.

Methods

We recorded vegetation composition and a number of environmental variables in 400-m2 plots that were established in 64 paired forest stands (32 invaded vs 32 uninvaded). We compiled traits from existing databases. We computed several metrics of taxonomic and functional diversity. We compared environmental variables and diversity metrics between invaded and uninvaded stands. We used correlation and regression analyses to relate them with R. ponticum's cover. We ran RLQ and fourth-corner analyses to explore the relationships between R. ponticum invasion, environmental variables, species traits, and vegetation composition.

Results

Independent of its abundance, R. ponticum invasion was associated with lower light arrival at the forest floor and increased litter thickness. Concomitantly, species richness and diversity and trait diversity were reduced. The major driver of species assemblages was soil pH, which strongly interacted with the invasion gradient. R. ponticum did not sort species according to traits associated with shade tolerance and thick-litter tolerance. However, tree and shrub saplings were more abundant in invaded than uninvaded stands, at the expense of graminoid and fern species.

Conclusions

As R. ponticum becomes the dominant shrub, it exerts new selection forces on life-history traits of extant species, mostly via reduced light availability, increased litter thickness, and physical competition, thereby reducing taxonomic and functional diversity of the herb layer, without impeding tree and shrub self-regeneration, at least in the short term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号