首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   838篇
  免费   59篇
  国内免费   5篇
  2023年   10篇
  2022年   11篇
  2021年   19篇
  2020年   19篇
  2019年   22篇
  2018年   19篇
  2017年   19篇
  2016年   17篇
  2015年   20篇
  2014年   18篇
  2013年   51篇
  2012年   21篇
  2011年   18篇
  2010年   10篇
  2009年   19篇
  2008年   35篇
  2007年   38篇
  2006年   40篇
  2005年   16篇
  2004年   23篇
  2003年   42篇
  2002年   39篇
  2001年   30篇
  2000年   43篇
  1999年   31篇
  1998年   31篇
  1997年   19篇
  1996年   21篇
  1995年   15篇
  1994年   13篇
  1993年   20篇
  1992年   24篇
  1991年   10篇
  1990年   10篇
  1989年   12篇
  1988年   15篇
  1987年   5篇
  1986年   7篇
  1985年   7篇
  1984年   7篇
  1983年   7篇
  1982年   6篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1976年   9篇
  1975年   6篇
  1974年   4篇
  1973年   2篇
排序方式: 共有902条查询结果,搜索用时 15 毫秒
861.
Tungsten (W) is increasingly shown to be toxic to various organisms, including plants. Apart from inactivation of molybdo-enzymes, other potential targets of W toxicity in plants, especially at the cellular level, have not yet been revealed. In the present study, the effect of W on the cortical microtubule array of interphase root tip cells was investigated, in combination with the possible antagonism of W for the pathway of molybdenum (Mo). Pisum sativum seedlings were treated with W, Mo or a combination of the two, and cortical microtubules were examined using tubulin immunofluorescnce and TEM. Treatments with anti-microtubule (oryzalin, colchicine and taxol) or anti-actomyosin (cytochalasin D, BDM or ML-7) drugs and W were also performed. W-affected cortical microtubules were low in number, short, not uniformly arranged and were resistant to anti-microtubule drugs. Cells pre-treated with oryzalin or colchicine and then treated with W displayed W-affected microtubules, while cortical microtubules pre-stabilized with taxol were resistant to W. Treatment with Mo and anti-actomyosin drugs prevented W from affecting cortical microtubules. Cortical microtubule recovery after W treatment was faster in Mo solution than in water. The results indicate that cortical microtubules of plant cells are indirectly affected by W, most probably through a mechanism depending on the in vivo antagonism of W for the Mo-binding site of Cnx1 protein.  相似文献   
862.
The spatial organization of microtubules is crucial for different cellular processes. It is traditionally supposed that fibroblasts have radial microtubule arrays consisting of long microtubules that run from the centrosome. However, a detailed analysis of the microtubule array in the internal cytoplasm has never been performed. In the current study, we used laser photobleaching to analyze the spatial organization of microtubules in the internal cytoplasm of cultured 3T3 fibroblasts. Cells were injected with Cy-3-labeled tubulin, after which the growth of microtubules in the centrosome region and peripheral parts of cytoplasm was assayed in the bleached zone. In most cases, microtubule growth in the bleached zone occurred rectilinearly; at distances of up to 5 μm, microtubules seldom bend more than 10°–15°. We considered a growing fragment of the microtubule as a vector with the beginning at the point of occurrence and the end at the point where the growth terminated (or the end point after 30 s if microtubule persistent growth proceeded for longer). We defined the direction of microtubule growth in different parts of the cell using these vectors and measured the angle of their deviation from the vector of comparison. In the area of the centrosome, we directed a comparison vector inside the bleached zone from the centrosome to the beginning of the growing microtubule segment; in the lamella and trailing part of the fibroblast, we used the vector of comparison directed along the long axis of the cell from its geometrical center to periphery. The microtubules growing straight away from the centrosome grew along the cell radius. However, at a distance of 10 μm from the centrosome, radially growing microtubules comprised 40% of the overall number, while at a distance of 20 μm, they made up only 25%. The rest of the microtubules grew in different directions, with the preferred angle between their growth direction and cell radius equaling around 90 °. In the lamella and trailing part of the fibroblast, 80% of all microtubules grew along the long axis of the cell or at an angle of no more than 20 °; 10–15% of microtubules grew along axis of the cell but towards the centrosome. Thus, in 3T3 fibroblasts, the radial system of microtubules is perturbed starting at a distance of several microns from the centrosome. In the internal cytoplasm, the microtubule system is completely disordered and, in the stretched parts of the polarized cell (lamella, trailing edge), the microtubule system again becomes well organized; microtubules are preferentially oriented along the long axis of the cell. From the results obtained, we conclude that the orderliness of microtubules at the periphery of the fibroblast is not a consequence of their growth from the centrosome; rather, their orientation is preset by local factors.  相似文献   
863.
ABSTRACT Axenically grown Giardia lamblia trophozoites treated with low concentrations of the benzimidazole carbamates albendazole and mebendazole detach from glass culture tubes and lose viability. Scanning electron microscopic observations revealed that these drugs produce grotesque modifications of the cell shape of the parasite and disassembly of the adhesive disc. Transmission electron microscopy showed several stages of the fragmentation of adhesive discs with dispersion of microtubules and microribbons in the cytoplasm. Flagella appeared undamaged. In drug-treated trophozoites electron-dense precipitates were selectively deposited on microtubules and microribbons. The results indicate that the antigiardial effect of benzimidazoles is the result of binding to microtubules and subsequent alterations of the cytoskeleton. The electron microscopic observations also suggest that the drugs may bind to microribbon components of the adhesive disc, possibly giardin proteins.  相似文献   
864.
Pokorný et al. have recently suggested that metabolic processes drivemicrotubules in a cell to vibrate at Megahertz frequencies, but the theorydoes not explicitly consider dissipative effects which will tend to damp outthe vibrations. To examine the effects of viscous damping on the structure,we determine viscous forces and rate of energy loss in a cylinderundergoing longitudinal oscillations in water. A nondimensional expressionis obtained for the viscous drag on the cylinder. When applied to amicrotubule, the results indicate that viscous damping is several orders ofmagnitude too large to allow resonant vibrations.  相似文献   
865.
Possible involvement of jasmonates in various morphogenic events   总被引:23,自引:0,他引:23  
Jasmonates (jasmonic acid and related compounds) seem to be involved in various morphogenic events of plants, such as tuberization (potato, yam and Jerusalem artichoke), tuberous root formation (sweet potato), bulb formation (onion and garlic), determination of plant structure (soybean) and thigmomorphogenesis (coiling of tendrils of Bryonia dioica ). The involvement of jasmonates in tuberization in these plants was inferred from their ability to induce tubers in vitro, and from changes in the levels of endogenous jasmonates during the growth of the plants, which can account for the initiation of tuberization. As to potato tuberization, jasmonic acid (JA) and its methyl ester (JA-Me) have strong tuber-inducing activity. These compounds seem to exert their tuber-inducing effects by elicting the expansion of cells, because JA and JA-Me are capable of causing the expansion of cells in potato tubers. The JA-induced expansion of cells is attributable to both an increase in osmotic pressure due to the accumulation of sucrose and changes in cell wall architecture that appear to affect the extensibility of the wall. And, moreover, the synthesis of cellulose might be indispensable for the JA-induced expansion. The tuberization and the expansion of cells induced by JA always involve the reorientation of cortical microtubules (MTs), suggesting that JA controls the direction of cell expansion by changing the arrangement of MTs. However, the reorientation of MTs itself seems to be insufficient for the induction of expansion of cells.
Involvement of jasmonates in bulb formation and tuberous root formation is presumed from the fact that JA is able to induce these in vitro. The exact nature of the control that the jasmonates exert on morphogenesis remains to be elucidated.  相似文献   
866.
The mitotic process in microsporidian Encephalitozoon hellem. a known human pathogen, has been studied with the aim of elucidating some ultrastructural aspects of its nuclear division. The presence of a nuclear spindle, of "electrondense spindle plaques" associated with the nuclear envelope and of cytoplasmic double walled vesicles are reported. We suggest that these "electrondense spindle plaques" serve as foci for intranuclear and cytoplasmic microtubule arrangements, similar to the microtubule organizing centers within the centrosomes of animal cells. The extent to which the microsporidial division process is comparable with that of more familiar eukaryotes such as yeast cells is discussed.  相似文献   
867.
868.
In this study we examined two aspects of β-tubulin function in Drosophila spermatogenesis: 1) β-tubulin structural requirements for assembly of different categories of microtubules and 2) regulatory requirements for production of the correct tubulin protein level. In normal Drosophila spermatogenesis, the testis-specific β2-tubulin isoform supports multiple microtubule functions. Our previous work showed that another Drosophila isoform, β3, cannot support spermatogenesis, whereas a carboxyl-truncated form of β2, β2ΔC, can at least to some extent provide all of β2′s normal functions, save one: β2ΔC cannot support organization of axonemal microtubules into the supramolecular architecture of the axoneme. Here, to test whether β2 carboxyl sequences can rescue the functional failure of the β3 isoform in spermatogenesis, we constructed a gene encoding a chimeric protein, β3β2C, in which β3 sequences in the carboxyl region are replaced with those of β2. Unlike either β3 or β2ΔC, β3β2C can provide partial function for both assembly of axonemal microtubules and their organization into the supramolecular architecture of the axoneme. In particular, the β2 carboxyl sequences mediate morphogenesis of the axoneme doublet tubule complex, including accessory microtubule assembly and attachment of spokes and linkers. However, our data also reveal aspects of β2-specific function that require structural features other than the primary sequence of the isotype-defining variable regions, the C terminus and the internal variable region. Tests of fecundity in males that co-express Δ2 and the chimeric Δ3Δ2C protein showed that in Drosophila there are differential requirements for sperm motility in the male and in the female reproductive tract. Since some aspects of microtubule function in spermatogenesis are sensitive to the tubulin pool size, we examined the mechanisms for control of tubulin protein levels in the male germ cells. We found that both Δ2-tubulin mRNA accumulation and protein synthesis are dependent on gene dose, and that the level of expression is regulated by 3′ noncoding sequences in the Δ2 gene. Our data show that the regulatory mechanisms that control tubulin pool levels in the Drosophila male germ line differ from those observed in cultured animal somatic cells. Finally, expression of transgenic constructs is consistent with early cessation of × chromosome expression in Drosophila spermatogenesis. © 1995 Wiley-Liss, Inc.  相似文献   
869.
《Current biology : CB》2021,31(15):3207-3220.e4
Download : Download video (7MB)  相似文献   
870.
Trifluralin, a herbicide which is known to bind to plant and algal tubulin, induced ultrastructural changes in the microtubules of the mature Plasmodium falciparum gametocytes in vitro. Trifluralin treatment led to disassembly of the well ordered subpellicular microtubules, whereas it had no effect on microtubules of human platelets or of rat neuronal cells in vitro. The disassembled microtubules showed fragmented large tubular structures, which frequently were associated with the pellicular membranes. Electron microscopic autoradiography showed radioactive trifluralin associated with the microtubule fragments. These results provide evidence that trifluralin selectively binds to microtubules in malaria parasites and causes disruption of their structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号