全文获取类型
收费全文 | 840篇 |
免费 | 59篇 |
国内免费 | 5篇 |
专业分类
904篇 |
出版年
2023年 | 11篇 |
2022年 | 12篇 |
2021年 | 19篇 |
2020年 | 19篇 |
2019年 | 22篇 |
2018年 | 19篇 |
2017年 | 19篇 |
2016年 | 17篇 |
2015年 | 20篇 |
2014年 | 18篇 |
2013年 | 51篇 |
2012年 | 21篇 |
2011年 | 18篇 |
2010年 | 10篇 |
2009年 | 19篇 |
2008年 | 35篇 |
2007年 | 38篇 |
2006年 | 40篇 |
2005年 | 16篇 |
2004年 | 23篇 |
2003年 | 42篇 |
2002年 | 39篇 |
2001年 | 30篇 |
2000年 | 43篇 |
1999年 | 31篇 |
1998年 | 31篇 |
1997年 | 19篇 |
1996年 | 21篇 |
1995年 | 15篇 |
1994年 | 13篇 |
1993年 | 20篇 |
1992年 | 24篇 |
1991年 | 10篇 |
1990年 | 10篇 |
1989年 | 12篇 |
1988年 | 15篇 |
1987年 | 5篇 |
1986年 | 7篇 |
1985年 | 7篇 |
1984年 | 7篇 |
1983年 | 7篇 |
1982年 | 6篇 |
1980年 | 5篇 |
1979年 | 6篇 |
1978年 | 5篇 |
1977年 | 5篇 |
1976年 | 9篇 |
1975年 | 6篇 |
1974年 | 4篇 |
1973年 | 2篇 |
排序方式: 共有904条查询结果,搜索用时 15 毫秒
821.
Human NUDC (hNUDC) was initially characterized as a nuclear migration protein based on the similarity of its C-terminus to that of fungal NUDC from Aspergillus nidulans. However, hNUDC is a 331 amino acid protein whereas fungal NUDC is 198 amino acids in length. The extra N-terminal portion of hNUDC has no known function or homology to other proteins. In this study, we report the binding of hNUDC to the extracellular domain of the thrombopoietin receptor (Mpl) as detected by the yeast two-hybrid system, GST pull-down, and co-immunoprecipitation. Our deletion analysis demonstrated that amino acids between positions 100 and 238 as the critical domain mediating the hNUDC and Mpl interactions as detected by the two-hybrid system and GST pull-down assay. Immunofluorescence staining of human megakaryocyte cells indicated that hNUDC and Mpl colocalized at all stages of megakaryocyte development. Substantial colocalization of hNUDC with microtubules was also detected around nuclei and elongated microtubular structures, especially in proplatelet extensions. 相似文献
822.
We have characterized 4 of the 16 members of the family of dynamin-related proteins (DRP) in Arabidopsis. Three members, DRP1A (previously referred as ADL1), DRP1C and DRP1E, belong to the largest group of phragmoplastin-like proteins. DRP2A (ADL6) is one of the two members that contain a pleckstrin homology (PH) domain and a proline-rich (PR) motif, characteristics of animal dynamins. All four proteins interacted in yeast two-hybrid assays with phragmoplastin, and showed different patterns of localization at the forming cell plate during cytokinesis. GFP-tagged DRP1A and DRP1C proteins were found to be associated with the cytoskeleton in G1 phase of the cell cycle. The distribution pattern of DRP1A was sensitive to propyzamid and insensitive to cytochalasin D, suggesting that DRP1A is associated with microtubules and not actin filaments. The association of DRP1A with microtubules was confirmed in vitro by spin-down assays. A GTPase-defective phragmoplastin acted as a dominant negative mutant, reduced transport of vesicles to the cell plate and formed dense tubule-like structures in the cell plate. We propose that DRP1 proteins may provide an anchor for Golgi-derived vesicles to attach to microtubules, which in turn direct the vesicles to the forming cell plate during cytokinesis. Whereas the DRP1 subfamily members are involved in tubulization of membranes, DRP2 may be involved in endocytosis and membrane recycling via clathrin-coated vesicles. 相似文献
823.
This article addresses the physical chemical processes underlying biological self-organisation by which a homogenous solution of reacting chemicals spontaneously self-organises. Theoreticians have predicted that self-organisation can arise from a coupling of reactive processes with molecular diffusion. In addition, the presence of an external field, such as gravity, at a critical moment early in the process may determine the morphology that subsequently develops. The formation, in-vitro, of microtubules, a constituent of the cellular skeleton, shows this type of behaviour. The preparations spontaneously self-organise by reaction-diffusion and the morphology that develops depends upon the presence of gravity at a critical bifurcation time early in the process. Here, we present numerical simulations of a population of microtubules that reproduce this behaviour. Microtubules can grow from one end whilst shrinking from the other. The shrinking end leaves behind a chemical trail of high tubulin concentration. Neighbouring microtubules preferentially grow into these regions, whilst avoiding regions of low tubulin concentration. The chemical trails produced by individual microtubules thus activate and inhibit the formation of neighbouring microtubules and this progressively leads to self-organisation. Gravity acts by way of its directional interaction with the macroscopic density fluctuations present in the solution arising from microtubule disassembly. 相似文献
824.
Postmitotic nuclear migration in Euastrum oblongnum Ralfs ex Ralfs starts about 80 min after septum formation with the nucleus leaving its central position in the isthmus and moving into the growing semicell. Nuclear migration is influenced by the chloroplast, which expands into the growing half-cell and pushes the nucleus toward one side of the cell. The nucleus occupies its farthest position from the isthmus when located in the middle of the growing semicell directly under the central depression of the cell surface. It remains in this position during the subsequent stages of cell development and moves back toward the isthmus within a chloroplast groove about 12 h after completion of cell shape formation. Bundles of microtubules (MTs) emanating from a microtubule center surround the nucleus during its motion. They reach far into the growing half-cell as long as the nucleus is moving but vanish when the nucleus stays in the growing semicell. MT-disrupting agents inhibit the backward movement of the nucleus toward the isthmus indicating that MTs are involved in this motion too. Because both MT inhibitors and cytochalasin B influence nuclear motion in Euastrum, an interaction of MTs and microfilaments is thought to function as the motive force for nuclear migration. 相似文献
825.
Microtubule organization and function in epithelial cells 总被引:8,自引:0,他引:8
Müsch A 《Traffic (Copenhagen, Denmark)》2004,5(1):1-9
Microtubules are essential for many aspects of polarity in multicellular organisms, ranging from the asymmetric distribution of cell-fate determinants in the one-cell embryo to the transient polarity generated in migrating fibroblasts. Epithelial cells exhibit permanent cell polarity characterized by apical and basolateral surface domains of distinct protein and lipid composition that are segregated by tight junctions. They are also endowed with a microtubule network that reflects the asymmetry of their cell surface: microtubule minus-ends face the apical- and microtubule plus-ends the basal domain. Strikingly, the formation of distinct surface domains during epithelial differentiation is accompanied by the re-organization of microtubules from a uniform array focused at the centrosome to the noncentrosomal network that aligns along the apico-basolateral polarity axis. The significance of this coincidence for epithelial morphogenesis and the signaling mechanisms that drive microtubule repolymerization in developing epithelia remain major unresolved questions that we are only beginning to address. Studies in cultured polarized epithelial cells have established that microtubules serve as tracks that facilitate targeted vesicular transport. Novel findings suggest, moreover, that microtubule-based transport promotes protein sorting, and even the generation of transport carriers in the endo- and exocytic pathways. 相似文献
826.
Hollinshead M Rodger G Van Eijl H Law M Hollinshead R Vaux DJ Smith GL 《The Journal of cell biology》2001,154(2):389-402
Vaccinia virus (VV) egress has been studied using confocal, video, and electron microscopy. Previously, intracellular-enveloped virus (IEV) particles were proposed to induce the polymerization of actin tails, which propel IEV particles to the cell surface. However, data presented support an alternative model in which microtubules transport virions to the cell surface and actin tails form beneath cell-associated enveloped virus (CEV) particles at the cell surface. Thus, VV is unique in using both microtubules and actin filaments for egress. The following data support this proposal. (a) Microscopy detected actin tails at the surface but not the center of cells. (b) VV mutants lacking the A33R, A34R, or A36R proteins are unable to induce actin tail formation but produce CEV and extracellular-enveloped virus. (c) CEV formation is inhibited by nocodazole but not cytochalasin D or 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo(3,4-d)pyrimidine (PP1). (d) IEV particles tagged with the enhanced green fluorescent protein fused to the VV B5R protein moved inside cells at 60 microm/min. This movement was stop-start, was along defined pathways, and was inhibited reversibly by nocodazole. This velocity was 20-fold greater than VV movement on actin tails and consonant with the rate of movement of organelles along microtubules. 相似文献
827.
Tau Protein Function in Axonal Formation 总被引:2,自引:0,他引:2
Tau protein is a predominantly neuronal microtubule-associated protein that is enriched in axons and is capable of promoting microtubule assembly and stabilization. In the present article we review some of the key experiments directed to obtain insights about tau protein function in developing neurons. Aspects related to whether or not tau has essential, unique, or complementary functions during axonal formation are discussed. 相似文献
828.
829.
We investigate planar cell polarity (PCP) in the Drosophila larval epidermis. The intricate pattern of denticles depends on only one system of PCP, the Dachsous/Fat system. Dachsous molecules in one cell bind to Fat molecules in a neighbour cell to make intercellular bridges. The disposition and orientation of these Dachsous–Fat bridges allows each cell to compare two neighbours and point its denticles towards the neighbour with the most Dachsous. Measurements of the amount of Dachsous reveal a peak at the back of the anterior compartment of each segment. Localization of Dachs and orientation of ectopic denticles help reveal the polarity of every cell. We discuss whether these findings support our gradient model of Dachsous activity. Several groups have proposed that Dachsous and Fat fix the direction of PCP via oriented microtubules that transport PCP proteins to one side of the cell. We test this proposition in the larval cells and find that most microtubules grow perpendicularly to the axis of PCP. We find no meaningful bias in the polarity of microtubules aligned close to that axis. We also reexamine published data from the pupal abdomen and find no evidence supporting the hypothesis that microtubular orientation draws the arrow of PCP. 相似文献
830.
The unicellular green alga Micrasterias denticulata performs a two-directional postmitotic nuclear migration during development, a passive migration into the growing semicell, and a microtubule mediated backward migration towards the cell centre. The present study provides first evidence for force generation by motor proteins of the kinesin family in this process. The new kinesin specific inhibitor adociasulfate-2 causes abnormal nuclear displacement at 18 microM. AMP-PNP, a non hydrolyseable ATP analogue or the general ATPase inhibitors calyculin A and sodium orthovanadate also disturb nuclear migration. In addition kinesin-like proteins are detected by means of immunoblotting using antibodies against brain kinesin, plant derived antibodies to kinesin-like proteins and a calmodulin binding kinesin-like protein. Immunoelectron microscopy suggests a correlation of conventional kinesin-like proteins, but not of the calmodulin binding kinesin-like protein to the microtubule apparatus associated with the migrating nucleus. 相似文献