首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   840篇
  免费   59篇
  国内免费   5篇
  2023年   11篇
  2022年   12篇
  2021年   19篇
  2020年   19篇
  2019年   22篇
  2018年   19篇
  2017年   19篇
  2016年   17篇
  2015年   20篇
  2014年   18篇
  2013年   51篇
  2012年   21篇
  2011年   18篇
  2010年   10篇
  2009年   19篇
  2008年   35篇
  2007年   38篇
  2006年   40篇
  2005年   16篇
  2004年   23篇
  2003年   42篇
  2002年   39篇
  2001年   30篇
  2000年   43篇
  1999年   31篇
  1998年   31篇
  1997年   19篇
  1996年   21篇
  1995年   15篇
  1994年   13篇
  1993年   20篇
  1992年   24篇
  1991年   10篇
  1990年   10篇
  1989年   12篇
  1988年   15篇
  1987年   5篇
  1986年   7篇
  1985年   7篇
  1984年   7篇
  1983年   7篇
  1982年   6篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1976年   9篇
  1975年   6篇
  1974年   4篇
  1973年   2篇
排序方式: 共有904条查询结果,搜索用时 15 毫秒
51.
The NIMA kinases are an evolutionarily conserved protein family with enigmatic roles in the regulation of mitosis. We report six new members of this family in Chlamydomonas, in addition to the previously identified NIMA-related kinase, Fa2p. Chlamydomonas NIMA-related kinases (CNKs) 1-6 were sequenced from subclones generated by RT-PCR using information from EST libraries and the recently sequenced Chlamydomonas genome. Phylogenetic and bioinformatic approaches were used to determine the relationships of the six new members with known members of the NIMA-related kinase family. Although humans express at least eleven NIMA-related kinases, the eukaryotic microbes that have been studied to date express only one or two members of the family. Thus, the discovery that Chlamydomonas expresses a total of at least seven NIMA-related kinases is intriguing. Our analyses suggest that members of this family may play roles in the assembly and function of cilia.  相似文献   
52.
ncd is a minus-end directed, kinesin-like motor, which binds to microtubules with its motor domain and its cargo domain as well. Typical of retrograde motors, the motor domain of ncd locates to the C-terminal end of the polypeptide chain, and hence, the cargo domain constitutes the N-terminal region. To date, several studies have investigated the interaction properties of the motor domain with microtubules, but very few structural data are available about the tail itself or its interaction with microtubules as cargo. Here, we applied cryo-electron microscopy and helical 3D image reconstruction to 15 protofilament microtubules decorated with an ncd tail fragment (N-terminal residues 83-187, named NT6). In our study, the ncd tail shows a behaviour resembling filamentous MAPs such as tau protein, exhibiting a highly flexible structure with no large globular domains. NT6 binds to four different sites on the outer side of microtubules within the proximity of the kinesin motor-binding site. Two of these sites locate within the groove between two neighbouring protofilaments, and appear as strong binding sites, while the other two sites, located at the outer rim, appear to play a secondary role. In addition, the ncd tail fragment induces the formation of large protofilament sheets, suggesting a tail-induced modification of lateral protofilament contacts.  相似文献   
53.
Rho family GTPases are important regulators of epithelial tight junctions (TJs); however, little is known about how the GTPases themselves are controlled during TJ assembly and function. We have identified and cloned a canine guanine nucleotide exchange factor (GEF) of the Dbl family of proto-oncogenes that activates Rho and associates with TJs. Based on sequence similarity searches and immunological and functional data, this protein is the canine homologue of human GEF-H1 and mouse Lfc, two previously identified Rho-specific exchange factors known to associate with microtubules in nonpolarized cells. In agreement with these observations, immunofluorescence of proliferating MDCK cells revealed that the endogenous canine GEF-H1/Lfc associates with mitotic spindles. Functional analysis based on overexpression and RNA interference in polarized MDCK cells revealed that this exchange factor for Rho regulates paracellular permeability of small hydrophilic tracers. Although overexpression resulted in increased size-selective paracellular permeability, such cell lines exhibited a normal overall morphology and formed fully assembled TJs as determined by measuring transepithelial resistance and by immunofluorescence and freeze-fracture analysis. These data indicate that GEF-H1/Lfc is a component of TJs and functions in the regulation of epithelial permeability.  相似文献   
54.
Near-simultaneous three-dimensional fluorescence/differential interference contrast microscopy was used to follow the behavior of microtubules and chromosomes in living alpha-tubulin/GFP-expressing cells after inhibition of the mitotic kinesin Eg5 with monastrol. Kinetochore fibers (K-fibers) were frequently observed forming in association with chromosomes both during monastrol treatment and after monastrol removal. Surprisingly, these K-fibers were oriented away from, and not directly connected to, centrosomes and incorporated into the spindle by the sliding of their distal ends toward centrosomes via a NuMA-dependent mechanism. Similar preformed K-fibers were also observed during spindle formation in untreated cells. In addition, upon monastrol removal, centrosomes established a transient chromosome-free bipolar array whose orientation specified the axis along which chromosomes segregated. We propose that the capture and incorporation of preformed K-fibers complements the microtubule plus-end capture mechanism and contributes to spindle formation in vertebrates.  相似文献   
55.
Protein L-isoaspartyl methyltransferase (PIMT) repairs the damaged proteins which have accumulated abnormal aspartyl residues during cell aging. Gene targeting has elucidated a physiological role for PIMT by showing that mice lacking PIMT died prematurely from fatal epileptic seizures. Here we investigated the role of PIMT in human mesial temporal lobe epilepsy. Using surgical specimens of hippocampus and neocortex from controls and epileptic patients, we showed that PIMT activity and expression were 50% lower in epileptic hippocampus than in controls but were unchanged in neocortex. Although the protein was down-regulated, PIMT mRNA expression was unchanged in epileptic hippocampus, suggesting post-translational regulation of the PIMT level. Moreover, several proteins with abnormal aspartyl residues accumulate in epileptic hippocampus. Microtubules component beta-tubulin, one of the major PIMT substrates, had an increased amount (two-fold) of L-isoaspartyl residues in the epileptic hippocampus. These results demonstrate that the down-regulation of PIMT in epileptic hippocampus leads to a significant accumulation of damaged tubulin that could contribute to neuron dysfunction in human mesial temporal lobe epilepsy.  相似文献   
56.
Auxin controls the orientation of cortical microtubules in maize coleoptile segments. We used tyrosinylated alpha-tubulin as a marker to assess auxin-dependent changes in microtubule turnover. Auxin-induced tyrosinylated alpha-tubulin, correlated with an elevated sensitivity of growth to antimicrotubular compounds such as ethyl-N-phenylcarbamate (EPC). We determined the affinity of alpha-tubulin to EPC and found that it was dramatically increased when the tubulin was de-tyrosinylated. By proteolytic cleavage of the carboxy terminal tyrosine, such an increased affinity could be induced in vitro. Thus, the auxin-induced sensitivity of growth to EPC is not caused by an increased affinity for this inhibitor, but caused by a reduced microtubule turnover. Double visualization assays revealed that the transverse microtubules induced by auxin consist predominantly of tyrosinylated alpha-tubulin, whereas the longitudinal microtubules induced by auxin depletion contain de-tyrosinylated alpha-tubulin. The results are discussed in terms of direction-dependent differences in the lifetime of microtubules.  相似文献   
57.
We approach the problem of an apparently random movement of small cytoplasmic vesicles and its relationship to centrosome functioning. Motion of small vesicles in the cytoplasm of BSC-1 cells was quantified using computer-assisted microscopy. The vesicles move across the cytoplasm frequently changing their directions with negligible net displacement. The autocorrelation function for consecutive velocities of individual vesicles becomes indistinguishable from zero in 10s. Variance in the displacement is proportional to time. The motion of vesicles is anisotropic: It has diffusivity along the radii drawn from the centrosome several times higher than the tangential diffusivity. This anisotropy is abolished by ultraviolet microbeam irradiation of the centrosome when the microtubule array loses radial structure. We conclude that the motion of the vesicles in the cytoplasm can be described as diffusion-like random walk with centrosome-dependent anisotropy. The present analysis quantitatively corroborates the 'trial and error' model of vesicular transport.  相似文献   
58.
Intracytoplasmic protein targeting in mammalian cells is critical for organelle function as well as virus assembly, but the signals that mediate it are poorly defined. We show here that Mason-Pfizer monkey virus specifically targets Gag precursor proteins to the pericentriolar region of the cytoplasm in a microtubule dependent process through interactions between a short peptide signal, known as the cytoplasmic targeting-retention signal, and the dynein/dynactin motor complex. The Gag molecules are concentrated in pericentriolar microdomains, where they assemble to form immature capsids. Depletion of Gag from this region by cycloheximide treatment, coupled with the presence of ribosomal clusters that are in close vicinity to the assembling capsids, suggests that the dominant N-terminal cytoplasmic targeting-retention signal functions in a cotranslational manner. Transport of the capsids out of the pericentriolar assembly site requires the env -gene product, and a functional vesicular transport system. A single point mutation that renders the cytoplasmic targeting-retention signal defective abrogates pericentriolar targeting of Gag molecules. Thus the previously defined cytoplasmic targeting-retention signal appears to act as a cotranslational intracellular targeting signal that concentrates Gag proteins at the centriole for assembly of capsids.  相似文献   
59.
Generation of specific antibodies against enriched subcellular fractions is a powerful strategy to identify and characterize cellular components. We show that recombinant antibodies can be selected in vitro by phage display against complex subcellular fractions, namely microtubule-binding proteins and Golgi stacks. This technique has allowed us to overcome many limitations of the classical animal-based approach and generate cell biology-compliant antibodies. In addition, we show that intracellular expression of GFP-tagged recombinant antibodies can reveal the dynamics of endogenous proteins in vivo . Endogenous Giantin is very static and outlines the Golgi in living cells. It accumulates neither onto Golgi-derived tubules upon Brefeldin A treatment before Golgi disappearance, nor onto de novo formed Golgi mini-stacks upon microtubule depolymerization, and remains instead on the 'old' pericentriolar Golgi. This suggests that, in contrast to other Golgi matrix proteins, endogenous Giantin is very stably associated with the Golgi and does not efficiently recycle to the ER. Altogether, we show that the antibody phage display technique represents an efficient alternative to rapidly generate versatile antibodies that represent new tools to study protein function.  相似文献   
60.
Photoactivation and photobleaching of fluorescence were used to determine the mechanism by which microtubules (MTs) are remodeled in PtK2 cells during fibroblast-like motility in response to hepatocyte growth factor (HGF). The data show that MTs are transported during cell motility in an actomyosin-dependent manner, and that the direction of transport depends on the dominant force in the region examined. MTs in the leading lamella move rearward relative to the substrate, as has been reported in newt cells (Waterman-Storer, C.M., and E.D. Salmon. 1997. J. Cell Biol. 139:417-434), whereas MTs in the cell body and in the retraction tail move forward, in the direction of cell locomotion. In the transition zone between the peripheral lamella and the cell body, a subset of MTs remains stationary with respect to the substrate, whereas neighboring MTs are transported either forward, with the cell body, or rearward, with actomyosin retrograde flow. In addition to transport, the photoactivated region frequently broadens, indicating that individual marked MTs are moved either at different rates or in different directions. Mark broadening is also observed in nonmotile cells, indicating that this aspect of transport is independent of cell locomotion. Quantitative measurements of the dissipation of photoactivated fluorescence show that, compared with MTs in control nonmotile cells, MT turnover is increased twofold in the lamella of HGF-treated cells but unchanged in the retraction tail, demonstrating that microtubule turnover is regionally regulated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号