首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5554篇
  免费   497篇
  国内免费   501篇
  2024年   20篇
  2023年   174篇
  2022年   184篇
  2021年   259篇
  2020年   250篇
  2019年   276篇
  2018年   237篇
  2017年   211篇
  2016年   229篇
  2015年   223篇
  2014年   259篇
  2013年   399篇
  2012年   227篇
  2011年   228篇
  2010年   217篇
  2009年   244篇
  2008年   223篇
  2007年   249篇
  2006年   244篇
  2005年   222篇
  2004年   196篇
  2003年   181篇
  2002年   141篇
  2001年   114篇
  2000年   122篇
  1999年   90篇
  1998年   87篇
  1997年   84篇
  1996年   80篇
  1995年   90篇
  1994年   85篇
  1993年   60篇
  1992年   61篇
  1991年   81篇
  1990年   58篇
  1989年   41篇
  1988年   41篇
  1987年   49篇
  1986年   45篇
  1985年   41篇
  1984年   28篇
  1983年   19篇
  1982年   33篇
  1981年   31篇
  1980年   17篇
  1979年   23篇
  1978年   14篇
  1977年   11篇
  1976年   19篇
  1975年   13篇
排序方式: 共有6552条查询结果,搜索用时 500 毫秒
991.
The availability and utility of genome‐scale metabolic reconstructions have exploded since the first genome‐scale reconstruction was published a decade ago. Reconstructions have now been built for a wide variety of organisms, and have been used toward five major ends: (1) contextualization of high‐throughput data, (2) guidance of metabolic engineering, (3) directing hypothesis‐driven discovery, (4) interrogation of multi‐species relationships, and (5) network property discovery. In this review, we examine the many uses and future directions of genome‐scale metabolic reconstructions, and we highlight trends and opportunities in the field that will make the greatest impact on many fields of biology.  相似文献   
992.
We analysed over 8 million base pairs of bacterial artificial chromosome-based sequence alignments of four Old World monkeys and the human genome. Our findings are as follows. (i) Genomic divergences among several Old World monkeys mirror those between well-studied hominoids. (ii) The X-chromosome evolves slower than autosomes, in accord with ‘male-driven evolution’. However, the degree of male mutation bias is lower in Old World monkeys than in hominoids. (iii) Evolutionary rates vary significantly between lineages. The baboon branch shows a particularly slow molecular evolution. Thus, lineage-specific evolutionary rate variation is a common theme of primate genome evolution. (iv) In contrast to the overall pattern, mutations originating from DNA methylation exhibit little variation between lineages. Our study illustrates the potential of primates as a model system to investigate genome evolution, in particular to elucidate molecular mechanisms of substitution rate variation.  相似文献   
993.
Aims: Paromamine is a vital and common intermediate in the biosynthesis of 4,5 and 4,6‐disubstituted 2‐deoxystreptamine (DOS)‐containing aminoglycosides. Our aim is to develop an engineered Escherichia coli system for heterologous production of paromamine. Methods and Results: We have constructed a mutant of E. coli BL21 (DE3) by disrupting glucose‐6‐phosphate isomerase (pgi) of primary metabolic pathway to increase glucose‐6‐phosphate pool inside the host. Disruption was carried out by λ Red/ET recombination following the protocol mentioned in the kit. Recombinants bearing 2‐deoxy‐scyllo‐inosose (DOI), DOS and paromamine producing genes were constructed from butirosin gene cluster and heterologously expressed in engineered host designed as E. coli BL21 (DE3) Δpgi. Secondary metabolites produced by the recombinants fermentated in 2YTG medium were extracted, and analysis of the extracts showed there is formation of DOI, DOS and paromamine. Conclusions: Escherichia coli system is engineered for heterologous expression of paromamine derivatives of aminoglycoside biosynthesis. Significance and Impact of the Study: This is the first report of heterologous expression of paromamine gene set in E. coli. Hence a new platform is established in E. coli system for the production of paromamine which is useful for the exploration of novel aminoglycosides by combinatorial biosynthesis of 4,5‐ and 4,6‐disubtituted route of DOS‐containing aminoglycosides.  相似文献   
994.
Summary A detailed metabolic flux analysis (MFA) for hyaluronic acid (HA) production by Streptococcus zooepidemicus was carried out. A metabolic network was constructed for the metabolism of S. zooepidemicus. Fluxes through these reactions were estimated by MFA using accumulation rates of biomass and product, consumption rate of glucose in batch fermentation and dissolved oxygen-controlled fermentation. The changes of the fluxes were observed at different stages of batch fermentation and in different dissolved oxygen tension (DOT)-controlled fermentation processes. The effects of metabolic nodes on HA accumulation under various culture conditions were investigated. The results showed that high concentration of glucose in the medium did not affect metabolic flux distribution, but did influence the uptake rate of glucose. HA synthesis was influenced by DOT via flux redistribution in the principal node. Adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH) produced in the fermentation process are associated with cell growth and HA synthesis.  相似文献   
995.
We have shown that stevioside (SVS) enhances insulin secretion and thus may have a potential role as antihyperglycemic agent in the treatment of type 2 diabetes mellitus. However, whether SVS stimulates basal insulin secretion (BIS) and/or cause desensitization of beta cells like sulphonylureas (SU), e.g. glibenclamide (GB), is not known. To explore and compare the effects of SVS pretreatment with those of GB and glucagon-like peptide-1 (GLP-1), we exposed isolated mouse islets to low or high glucose for 1 h after short-term (2 h) or long-term (24 h) pretreatment with SVS, GB or GLP-1, respectively. BIS at 3.3 or 5.5 mM glucose were not changed after short-term pretreatment with SVS (10(-7) M), while it increased about three folds after pretreatment with GB (10(-7) M). Glucose stimulated insulin secretion (GSIS) (16.7 mM) increased dose-dependently after long-term pretreatment with SVS at concentrations from 10(-7) to 10(-5) M. Pretreatment for 24 h with GB (10(-7) M) increased the subsequent BIS (3.3 mM glucose) (p < 0.001), but decreased GSIS (16.7 mM glucose) (p < 0.001). In contrast SVS (10(-7) M) and GLP-1 (10(-7) M) did not stimulate BIS but both enhanced the subsequent GSIS (16.7 mM glucose) (p < 0.05 and p < 0.05, respectively). While SVS pretreatment increased the intracellular insulin content, GB pretreatment decreased the insulin content. Our study suggests that SVS pretreatment does not cause a stimulation of BIS and does not desensitize beta-cells, i.e. SVS seems to have advantageous characteristics to GB as a potential treatment of type 2 diabetes.  相似文献   
996.
The state of the art tools for modeling metabolism, typically used in the domain of metabolic engineering, were reviewed. The tools considered are stoichiometric network analysis (elementary modes and extreme pathways), stoichiometric modeling (metabolic flux analysis, flux balance analysis, and carbon modeling), mechanistic and approximative modeling, cybernetic modeling, and multivariate statistics. In the context of metabolic engineering, one should be aware that the usefulness of these tools to optimize microbial metabolism for overproducing a target compound depends predominantly on the characteristic properties of that compound. Because of their shortcomings not all tools are suitable for every kind of optimization; issues like the dependence of the target compound's synthesis on severe (redox) constraints, the characteristics of its formation pathway, and the achievable/desired flux towards the target compound should play a role when choosing the optimization strategy. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
997.
Complex biological systems exhibit a property of robustness at all levels of organization. Through different mechanisms, the system tries to sustain stress such as due to starvation or drug exposure. To explore whether reconfiguration of the metabolic networks is used as a means to achieve robustness, we have studied possible metabolic adjustments in Mtb upon exposure to isoniazid (INH), a front-line clinical drug. The redundancy in the genome of M. tuberculosis (Mtb) makes it an attractive system to explore if alternate routes of metabolism exist in the bacterium. While the mechanism of action of INH is well studied, its effect on the overall metabolism is not well characterized. Using flux balance analysis, inhibiting the fluxes flowing through the reactions catalyzed by Rv1484, the target of INH, significantly changes the overall flux profiles. At the pathway level, activation or inactivation of certain pathways distant from the target pathway, are seen. Metabolites such as NADPH are shown to reduce drastically, while fatty acids tend to accumulate. The overall biomass also decreases with increasing inhibition levels. Inhibition studies, pathway level clustering and comparison of the flux profiles with the gene expression data indicate the activation of folate metabolism, ubiquinone metabolism, and metabolism of certain amino acids. This analysis provides insights useful for target identification and designing strategies for combination therapy. Insights gained about the role of individual components of a system and their interactions will also provide a basis for reconstruction of whole systems through synthetic biology approaches.  相似文献   
998.
The retinol dehydrogenase Rdh10 catalyzes the rate-limiting reaction that converts retinol into retinoic acid (RA), an autacoid that regulates energy balance and reduces adiposity. Skeletal muscle contributes to preventing adiposity, by consuming nearly half the energy of a typical human. We report sexually dimorphic differences in energy metabolism and muscle function in Rdh10+/− mice. Relative to wild-type (WT) controls, Rdh10+/− males fed a high-fat diet decrease reliance on fatty-acid oxidation and experience glucose intolerance and insulin resistance. Running endurance decreases 40%. Rdh10+/− females fed this diet increase fatty acid oxidation and experience neither glucose intolerance nor insulin resistance. Running endurance increases 220%. We therefore assessed RA function in the mixed-fiber type gastrocnemius muscles (GM), which contribute to running, rather than standing, and are similar to human GM. RA levels in Rdh10+/− male GM decrease 38% relative to WT. Rdh10+/− male GM increase expression of Myog and reduce Eif6 mRNAs, which reduce and enhance running endurance, respectively. Cox5A, complex IV activity, and ATP decrease. Increased centralized nuclei reveal existence of muscle malady and/or repair in GM fibers. Comparatively, RA in Rdh10+/− female GM decreases by less than half the male decrease, from a more modest decrease in Rdh10 and an increase in the estrogen-induced retinol dehydrogenase Dhrs9. Myog mRNA decreases. Cox5A, complex IV activity, and ATP increase. Centralized GM nuclei do not increase. We conclude that Rdh10/RA affects whole body energy use and insulin resistance partially through sexual dimorphic effects on skeletal muscle gene expression, structure, and mitochondria activity.  相似文献   
999.
龚文芳  路立京  刘鑫  陈喜文  陈德富 《遗传》2013,35(2):233-240
雨生红球藻是一种淡水浮游单细胞绿藻, 逆境条件下可积累大量的类胡萝卜素。番茄红素是类胡萝卜素中的一种, 是类胡萝卜素合成代谢中的一个重要中间产物。番茄红素β-环化酶(LycB)是催化番茄红素形成β-胡萝卜素的关键酶。文章以杜氏盐藻lycB基因为干扰序列, 构建了含卡那霉素与阿特拉津双抗性的RNAi载体p1301-BS-RNAi。将其电转化进雨生红球藻细胞, 经抗性筛选、基因组PCR及RT-PCR筛选, 获得了16个独立的干扰株系。选取生长良好的7个进行高光诱导, 发现其番茄红素含量增加了99.4%, β-胡萝卜素含量减少了48.4%, 即通过异源的lycB-RNAi基因沉默可抑制番茄红素向β-胡萝卜素的转化。对比分析发现, 番茄红素增加量仅是β-胡萝卜素减少量的5%, 表明因lycB-RNAi抑制而产生的番茄红素的95%又被其他通路转换成了其他代谢产物, 因此要实现雨生红球藻番茄红素含量的大幅增长, 需协同调控其他代谢通路。  相似文献   
1000.
Aims In grassland biodiversity experiments, positive biodiversity effects on primary productivity increase over time. Recent research has shown that differential selection in monoculture and mixed-species communities leads to the rapid emergence of monoculture and mixture types, adapted to their own biotic community. We used eight plant species selected for 8 years in such a biodiversity experiment to test if monoculture and mixture types differed in metabolic profiles using infrared spectroscopy.Methods Fourier transform infrared spectroscopy (FTIR) was used to assess metabolic fingerprints of leaf samples of 10 individuals of each species from either monocultures or mixtures. The FTIR spectra were analyzed using multivariate procedures to assess (i) whether individuals within species could be correctly assigned to monoculture or mixture history based on the spectra alone and (ii) which parts of the spectra drive the group assignment, i.e. which metabolic groups were subject to differential selection in monocultures vs. mixtures.Important findings Plant individuals within each of the eight species could be classified as either from monoculture or mixture selection history based on their FTIR spectra. Different metabolic groups were differentially selected in the different species; some of them may be related to defense of pathogens accumulating more strongly in monocultures than in mixtures. The rapid selection of the monoculture and mixture types within the eight study species could have been due to a sorting-out process based on large initial genetic or epigenetic variation within the species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号