首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5572篇
  免费   505篇
  国内免费   502篇
  6579篇
  2024年   28篇
  2023年   181篇
  2022年   193篇
  2021年   259篇
  2020年   252篇
  2019年   276篇
  2018年   238篇
  2017年   211篇
  2016年   229篇
  2015年   223篇
  2014年   259篇
  2013年   399篇
  2012年   227篇
  2011年   228篇
  2010年   217篇
  2009年   244篇
  2008年   223篇
  2007年   249篇
  2006年   244篇
  2005年   222篇
  2004年   196篇
  2003年   181篇
  2002年   141篇
  2001年   114篇
  2000年   122篇
  1999年   90篇
  1998年   87篇
  1997年   84篇
  1996年   80篇
  1995年   90篇
  1994年   85篇
  1993年   60篇
  1992年   61篇
  1991年   81篇
  1990年   58篇
  1989年   41篇
  1988年   41篇
  1987年   49篇
  1986年   45篇
  1985年   41篇
  1984年   28篇
  1983年   19篇
  1982年   33篇
  1981年   31篇
  1980年   17篇
  1979年   23篇
  1978年   14篇
  1977年   11篇
  1976年   19篇
  1975年   13篇
排序方式: 共有6579条查询结果,搜索用时 15 毫秒
951.
Metabolic cold adaptation (MCA), the hypothesis that species from cold climates have relatively higher metabolic rates than those from warm climates, was first proposed nearly 100 years ago and remains one of the most controversial hypotheses in physiological ecology. In the present study, we test the MCA hypothesis in fishes at the level of whole animal, mitochondria and enzyme. In support of the MCA hypothesis, we find that when normalized to a common temperature, species with ranges that extend to high latitude (cooler climates) have high aerobic enzyme (citrate synthase) activity, high rates of mitochondrial respiration and high standard metabolic rates. Metabolic compensation for the global temperature gradient is not complete however, so when measured at their habitat temperature species from high latitude have lower absolute rates of metabolism than species from low latitudes. Evolutionary adaptation and thermal plasticity are therefore insufficient to completely overcome the acute thermodynamic effects of temperature, at least in fishes.  相似文献   
952.
Aim To move towards modelling spatial abundance patterns and to evaluate the relative impacts of climatic change upon species abundances as opposed to range extents. Location Southern Africa, including Lesotho, Namibia, South Africa, Swaziland and Zimbabwe. Methods Quantitative response surface models were fitted for 78 bird species, mostly endemic (68) or near‐endemic to the region, to model relationships between species reporting rates (i.e. the proportion of checklists reporting a species for a particular grid cell), as recorded by the Southern African Bird Atlas Project, and four bioclimatic variables derived from climatic data for the period 1961–90. With caution, reporting rates can be used as a proxy for abundance. Models were used to project potential impacts of a series of projected climatic change scenarios upon species abundance patterns and range extents. Results Most models obtained were robust with good predictive power. Projections of potential future abundance patterns indicate that the magnitude of impacts upon a proxy for abundance are greater than those upon range extent for the majority of species (82% by 2071–2100). For most species (74%) both abundance and range extent are projected to decrease by 2100. Impacts are especially severe if species are unable to realize projected range changes; when only the area of a species' simulated present range is considered, overall abundance decreases of more than 80% are projected for 19 (24%) of species examined. Main conclusions Our results indicate that projected climatic changes are likely to elicit greater relative changes in species abundances than range extents. For most species examined changes were decreases, suggesting the impacts upon biodiversity are likely generally to be negative. These results also suggest that previous estimates of the proportion of species at increased risk of extinction as a result of climatic change may, in some cases, be under‐estimates.  相似文献   
953.
954.
Kalli A  Hess S 《Proteomics》2012,12(1):21-31
The success of a shotgun proteomic experiment relies heavily on the performance and optimization of both the LC and the MS systems. Despite this, little consideration has, so far, been given to the importance of evaluating and optimizing the MS instrument settings during data‐dependent acquisition mode. Moreover, during data‐dependent acquisition, the users have to decide and choose among various MS parameters and settings, making a successful analysis even more challenging. We have systematically investigated and evaluated the effect of enabling and disabling the preview mode for FTMS scan, the number of microscans per MS/MS scan, the number of MS/MS events, the maximum ion injection time for MS/MS, and the automatic gain control target value for MS and MS/MS events on protein and peptide identification rates on an LTQ‐Orbitrap using the Saccharomyces cerevisiae proteome. Our investigations aimed to assess the significance of each MS parameter to improve proteome analysis and coverage. We observed that higher identification rates were obtained at lower ion injection times i.e. 50–150 ms, by performing one microscan and 12–15 MS/MS events. In terms of ion population, optimal automatic gain control target values were at 5×105–1×106 ions for MS and 3×103–1×104 ions for MS/MS. The preview mode scan had a minimal effect on identification rates. Using optimized MS settings, we identified 1038 (±2.3%) protein groups with a minimum of two peptide identifications and an estimated false discovery rate of ~1% at both peptide and protein level in a 160‐min LC‐MS/MS analysis.  相似文献   
955.
W Liu  JM Phang 《Autophagy》2012,8(9):1407-1409
Proline dehydrogenase (oxidase, PRODH/POX), the first enzyme in the pathway of proline catabolism, has been identified as a mitochondrial, metabolic tumor suppressor, which is downregulated in a variety of human tumors. However, our recent findings show that PRODH/POX is upregulated by hypoxia in vitro and in vivo. The combination of low glucose and hypoxia produces additive effects on PRODH/POX expression. Both hypoxia and glucose depletion enhance PRODH/POX expression through AMP-activated protein kinase (AMPK) activation to promote tumor cell survival. Nevertheless, the mechanisms underlying PRODH/POX prosurvival functions are different for hypoxia and low-glucose conditions. Glucose depletion with or without hypoxia elevates PRODH/POX and proline utilization to supply ATP for cellular energy needs. Interestingly, under hypoxia PRODH/POX induces protective autophagy by generating reactive oxygen species (ROS). AMPK is the main initiator of stress-triggered autophagy. Thus, PRODH/POX acts as a downstream effector of AMPK in the activation of autophagy under hypoxia. This regulation was confirmed to be independent of the mechanistic target of rapamycin (MTOR) pathway, a major downstream target of AMPK signaling.  相似文献   
956.
Foetal life malnutrition has been studied intensively in a number of animal models. Results show that especially foetal life protein malnutrition can lead to metabolic changes later in life. This might be of particular importance for strict carnivores, for example, cat and mink (Neovison vison) because of their higher protein requirement than in other domestic mammals. This study aimed to investigate the effects of low protein provision during foetal life to male mink kits on their protein metabolism during the early post-weaning period of rapid growth and to investigate whether foetal life protein deficiency affects the response to adequate or deficient protein provision post weaning. Further, we intended to study whether the changes in the gene expression of key enzymes in foetal hepatic tissue caused by maternal protein deficiency were manifested post-weaning. A total of 32 male mink kits born to mothers fed either a low-protein diet (LP), that is, 14% of metabolizable energy (ME) from protein (foetal low - FL), n = 16, or an adequate-protein (AP) diet, that is, 29% of ME from protein (foetal adequate - FA), n = 16) in the last 16.3 ± 1.8 days of pregnancy were used. The FL offspring had lower birth weight and lower relative abundance of fructose-1,6-bisphosphatase (Fru-1,6-P2ase) and pyruvate kinase mRNA in foetal hepatic tissue than FA kits. The mothers were fed a diet containing adequate protein until weaning. At weaning (7 weeks of age), half of the kits from each foetal treatment group were fed an AP diet (32% of ME from protein; n = 8 FA and 8 FL) and the other half were fed a LP diet (18% of ME from protein; n = 8 FA and 8 FL) until 9.5 weeks of age, yielding four treatment groups (i.e. FA-AP, FA-LP, FL-AP and FL-LP). Low protein provision in foetal life lowered the protein oxidation post-weaning compared with the controls (P = 0.006), indicating metabolic flexibility and a better ability to conserve protein. This could not, however, be supported by changes in liver mass because of foetal life experience. A lower relative abundance of Fru-1,6-P2ase mRNA was observed (P < 0.05), being lower in 9.5-week-old FL than in FA kits. It can be concluded that foetal life protein restriction leads to changes in post-weaning protein metabolism through lower protein oxidation of male mink kits.  相似文献   
957.
Since Alzheimer's disease (AD) has no cure or preventive treatment, an urgent need exists to find a means of preventing, delaying the onset, or reversing the course of the disease. Clinical and epidemiological evidence suggests that lifestyle factors, especially nutrition, may be crucial in controlling AD. Unhealthy lifestyle choices lead to an increasing incidence of obesity, dyslipidemia and hypertension – components of the metabolic syndrome. These disorders can also be linked to AD. Recent research supports the hypothesis that calorie intake, among other non-genetic factors, can influence the risk of clinical dementia. In animal studies, high calorie intake in the form of saturated fat promoted AD-type amyloidosis, while calorie restriction via reduced carbohydrate intake prevented it. Pending further study, it is prudent to recommend to those at risk for AD – e.g. with a family history or features of metabolic syndrome, such as obesity, insulin insensitivity, etc. – to avoid foods and beverages with added sugars; to eat whole, unrefined foods with natural fats, especially fish, nuts and seeds, olives and olive oil; and to minimize foods that disrupt insulin and blood sugar balance.  相似文献   
958.
Metabolism is a defining feature of all living organisms, with the metabolic process resulting in the production of free radicals that can cause permanent damage to DNA and other molecules. Surprisingly, birds, bats and other organisms with high metabolic rates have some of the slowest rates of senescence begging the question whether species with high metabolic rates also have evolved mechanisms to cope with damage induced by metabolism. To test whether species with the highest metabolic rates also lived the longest I determined the relationship between relative longevity (maximum lifespan), after adjusting for annual adult survival rate, body mass and sampling effort, and mass-specific field metabolic rate (FMR) in 35 species of birds. There was a strongly positive relationship between relative longevity and FMR, consistent with the hypothesis. This conclusion was robust to statistical control for effects of potentially confounding variables such as age at first reproduction, latitude and migration distance, and similarity in phenotype among species because of common phylogenetic descent. Therefore, species of birds with high metabolic rates senesce more slowly than species with low metabolic rates.  相似文献   
959.
960.
Biologists have long sought a means by which to quantify similarities and differences in embryonic development across species. Here we present a quantitative approach for predicting the timing of developmental events based on principles of allometry and biochemical kinetics. Data from diverse oviparous species support model predictions that most variation in the time required to reach one early developmental stage-the time to first heartbeat-is explained by the body size and temperature dependence of metabolic rate. Furthermore, comparisons of this stage with later developmental stages suggest that, after correcting for size and temperature, the relationship of metabolic rate to the rate of embryogenesis is approximately invariant across taxonomic groups and stages of ontogeny.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号