首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   11篇
  国内免费   10篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   7篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   16篇
  2013年   8篇
  2012年   7篇
  2011年   5篇
  2010年   6篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   9篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   9篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1992年   2篇
  1990年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有140条查询结果,搜索用时 78 毫秒
41.
ORC (origin recognition complex) serves as the initiator for the assembly of the pre-RC (pre-replication complex) and the subsequent DNA replication. Together with many of its non-replication functions, ORC is a pivotal regulator of various cellular processes. Notably, a number of reports connect ORC to numerous human diseases, including MGS (Meier–Gorlin syndrome), EBV (Epstein–Barr virus)-infected diseases, American trypanosomiasis and African trypanosomiasis. However, much of the underlying molecular mechanism remains unclear. In those genetic diseases, mutations in ORC alter its function and lead to the dysregulated phenotypes; whereas in some pathogen-induced symptoms, host ORC and archaeal-like ORC are exploited by these organisms to maintain their own genomes. In this review, I provide detailed examples of ORC-related human diseases, and summarize the current findings on how ORC is involved and/or dysregulated. I further discuss how these discoveries can be generalized as model systems, which can then be applied to elucidating other related diseases and revealing potential targets for developing effective therapies.  相似文献   
42.
43.
Although mutations of autoimmune regulator (AIRE) gene are responsible for autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), presenting a wide spectrum of many characteristic and non-characteristic clinical features, some patients lack AIRE gene mutations. Therefore, something other than a mutation, such as dysregulation of AIRE gene, may be a causal factor for APECED or its related diseases. However, regulatory mechanisms for AIRE gene expression and/or translation have still remained elusive. We found that IL-2-stimulated CD4+ T (IL-2T) cells showed a high expression of AIRE gene, but very low AIRE protein production, while Epstein–Barr virus-transformed B (EBV-B) cells express both AIRE gene and AIRE protein. By using microarray analysis, we could identify miR-220b as a possible regulatory mechanism for AIRE gene translation in IL-2T cells. Here we report that miR-220b significantly reduced the expression of AIRE protein in AIRE gene with 3′UTR region transfected 293T cells, whereas no alteration of AIRE protein production was observed in the open reading frame of AIRE gene alone transfected cells. In addition, anti-miR-220b reversed the inhibitory function of miR-220b for the expression of AIRE protein in AIRE gene with 3′UTR region transfected cells. Moreover, when AIRE gene transfected cells with mutated 3′UTR were transfected with miR-220b, no reduction of AIRE protein production was observed. Taken together, it was concluded that miR-220b inhibited the AIRE gene translation through the 3′UTR region of AIRE gene, indicating that miR-220b could serve as a regulator for human AIRE gene translation.  相似文献   
44.
Adenoviral, retroviral/lentiviral, adeno-associated viral, and herpesviral vectors are the major viral vectors used in gene therapy. Compared with non-viral methods, viruses are highly-evolved, natural delivery agents for genetic materials. Despite their remarkable transduction efficiency, both clinical trials and laboratory experiments have suggested that viral vectors have inherent shortcomings for gene therapy, including limited loading capacity, immunogenicity, genotoxicity, and failure to support long-term adequate transgenic expression. One of the key issues in viral gene therapy is the state of the delivered genetic material in transduced cells. To address genotoxicity and improve the therapeutic transgene expression profile, construction of hybrid vectors have recently been developed. By adding new abilities or replacing certain undesirable elements, novel hybrid viral vectors are expected to outperform their conventional counterparts with improved safety and enhanced therapeutic efficacy. This review provides a comprehensive summary of current achievements in hybrid viral vector development and their impact on the field of gene therapy.  相似文献   
45.
46.
47.
The aims of this study were to elucidate the kinetics of Epstein-Barr virus (EBV) DNA load in serially collected peripheral blood mononuclear cells of patients with primary EBV infection, and to determine the correlated host factors. Blood samples were collected from 24 patients with primary EBV infection. EBV DNA copy numbers were measured using real-time polymerase chain reaction. Based on the kinetics of EBV DNA load, the 24 patients were divided into two groups: rapid regression and slow regression. Eighteen of the 24 patients (75%) were included in the slow regression and 6 (25%) in the rapid regression group. No statistically significant differences were observed between the two groups in clinical features and laboratory findings. However, acute phase (3 to 10 days after the onset of the illness) serum samples from six children in the slow regression and four in the rapid regression group revealed significantly higher serum interleukin (IL)-1β (P= 0.018), IL-12 (P= 0.009), tumor necrosis factor-α (P= 0.019), interferon-inducible protein 10, and monokine induced by interferon γ concentrations in the rapid regression than the slow regression group. On the other hand, sera from six children in the slow regression and four in the rapid regression group in the convalescent phase (14 to 21 days after the onset of the illness) showed no statistically significant differences between the two groups in these biomarker concentrations. Based on this, it was concluded that the kinetics of EBV DNA load can be divided to two different patterns after primary EBV infection, and immune response might be associated with viral clearance.  相似文献   
48.
Epstein-Barr virus associated hemophagocytic lymphohistiocytosis (EBV-HLH) has a high mortality rate among children. The pathogenesis of, and underlying predisposing factors for, EBV-HLH are as yet unclear; however, natural killer cells may play a key role in progression of the disease. This study attempted to determine whether killer cell immunoglobulin-like receptor (KIR) gene polymorphisms are responsible for susceptibility to EBV-HLH. Of the 125 children with EBV infection studied, 59 had EBV-HLH and 66 patients had EBV associated infectious mononucleosis (IM) without HLH. The control group was 146 normal children without immune deficiency. KIR polymorphisms were determined by polymerase chain reaction with sequence-specific primers. KIR polymorphism data were analyzed using the X(2) test or Fisher's exact test. The overall observed carrier frequency (OF) of KIR2DS5 was significantly higher in EBV-HLH patients than in IM patients and normal controls (49.2% versus 31.8%, P = 0.048; 49.2% versus 31.5%, P = 0.018, respectively), and the odds ratios (95% confidence interval) were 2.071 (1.001-4.286) and 2.101(1.132-3.900) respectively. The OF of KIR3DS1 was significantly higher in the EBV-HLH patients than in the IM patients (47.4% versus 24.6%, P = 0.012), but not different from normal controls. In summary, KIR polymorphisms may be involved in the development of EBV-HLH, with KIR2DS5 promoting susceptibility to this disease. The obtained KIR data will enrich the understanding of genetic relationships among diseases associated with EBV infection in children.  相似文献   
49.
EBV (Epstein-Barr virus) is considered to be a major factor that causes NPC (nasopharyngeal carcinoma), which is one of the sneakiest cancers frequently occurring in Southeast Asia and Southern China. Apoptosis and pro-apoptotic signals have been studied for decades; however, few have extended the prevailing view of EBV to its impact on NPC in perspective of apoptosis. One of the important proteins named VDAC1 (voltage-dependent anion protein 1) on the mitochondrial outer membrane controls the pro-apoptotic signals in mammalian cells. The impact of EBV infection on VDAC1 and related apoptotic signals remains unclear. In order to study the VDAC1's role in EBV-infected NPC cells, we employ siRNA (small interfering RNA) inhibition to analyse the release of Ca2+ and Cyto c (cytochrome c) signals in the cytoplasm, as they are important pro-apoptotic signals. The results show a decrease of Ca2+ release and up-regulation of Cyto c with EBV infection. After siRNA transfection, the dysregulation of Cyto c is neutralized, which is evidence that the level of Cyto c release in virus-infected NPC cells is the as same as that of non-infected NPC cells. This result indicates that EBV infection changes the cytoplasmic level of Cyto c through regulating VDAC1. In summary, this study reports that EBV changes the release of Ca2+ and Cyto c in the cytoplasm of NPC cells, and that Cyto c changes are mediated by VDAC1 regulation.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号