首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2041篇
  免费   79篇
  国内免费   56篇
  2176篇
  2023年   11篇
  2022年   21篇
  2021年   32篇
  2020年   33篇
  2019年   62篇
  2018年   47篇
  2017年   47篇
  2016年   44篇
  2015年   30篇
  2014年   93篇
  2013年   96篇
  2012年   55篇
  2011年   75篇
  2010年   56篇
  2009年   97篇
  2008年   83篇
  2007年   89篇
  2006年   83篇
  2005年   105篇
  2004年   82篇
  2003年   57篇
  2002年   66篇
  2001年   52篇
  2000年   54篇
  1999年   35篇
  1998年   39篇
  1997年   41篇
  1996年   31篇
  1995年   32篇
  1994年   34篇
  1993年   32篇
  1992年   30篇
  1991年   21篇
  1990年   18篇
  1989年   26篇
  1988年   31篇
  1987年   30篇
  1986年   27篇
  1985年   48篇
  1984年   53篇
  1983年   27篇
  1982年   51篇
  1981年   32篇
  1980年   22篇
  1979年   19篇
  1978年   6篇
  1977年   4篇
  1976年   6篇
  1974年   4篇
  1973年   3篇
排序方式: 共有2176条查询结果,搜索用时 15 毫秒
111.
A catalytic amount of cytochrome c (cyto-c) added to the incubation medium of isolated mitochondria promotes the transfer of reducing equivalents from extramitochondrial nicotinamide adenine dinucleotide in its reduced state (NADH) to molecular oxygen inside the mitochondria, a process coupled to the generation of a membrane potential. This mimics in many aspects the early stages of those apoptotic pathways characterized by the persistence of mitochondrial membrane potential but with cyto-c already exported into the cytosol. In cyclosporin-sensitive and calcium-induced mitochondrial permeability transition (MPT) a release of cyto-c can also be observed. However, in MPT uncoupled respiration associated with mitochondrial swelling and preceded by the complete dissipation of the membrane potential which cannot be restored with ATP addition or any other source of energy is immediately activated. The results obtained and discussed with regard to intactness of mitochondrial preparations indicate that MPT could be an apoptotic event downstream but not upstream of cyto-c release linked to the energy-requiring processes. In the early stages of apoptosis cytosolic cyto-c participates in the activation of caspases and at the same time can promote the oxidation of cytosolic NADH, making more energy available for the correct execution of the cell death program. This hypothesis is not in contrast with available data in the literature showing that cyto-c is present in the cytosol of both control and apoptosis-induced cultured cell lines.  相似文献   
112.
Abstract

Stallion sperm exhibits great male-to-male variability in survival after cryopreservation. In this study, we have investigated if differences in sperm freezability can be attributed to membrane phase and permeability properties. Fourier transform infrared spectroscopy (FTIR) was used to determine supra and subzero membrane phase transitions and characteristic subzero membrane hydraulic permeability parameters. Sperm was obtained from stallions that show differences in sperm viability after cryopreservation. Stallion sperm undergoes a broad and gradual phase transition at suprazero temperatures, from 30–10°C, whereas freezing-induced dehydration of the cells causes a more severe phase transition to a highly ordered gel phase. Sperm from individual stallions showed significant differences in post-thaw progressive motility, percentages of sperm with abnormal cell morphology, and chromatin stability. The biophysical membrane properties evaluated in this study, however, did not show clear differences amongst stallions with differences in sperm freezability. Cyclodextrin treatment to remove cholesterol from the cellular membranes increased the cooperativity of the suprazero phase transition, but had little effects on the subzero membrane phase behavior. In contrast, freezing of sperm in the presence of protective agents decreased the rate of membrane dehydration and increased the total extent of dehydration. Cryoprotective agents such as glycerol decrease the amount of energy needed to transport water across cellular membranes during freezing.  相似文献   
113.
Fluorescence-guided imaging during surgery is a promising technique that is increasingly used to aid surgeons in identifying sites of tumor and surgical margins. Of the two types of fluorescent probes, always-on and activatable, activatable probes are preferred because they produce higher target-to-background ratios, thus improving sensitivity compared with always-on probes that must contend with considerable background signal. There are two types of activatable probes: 1) enzyme-reactive probes that are normally quenched but can be activated after cleavage by cancer-specific enzymes (activity-based probes) and 2) molecular-binding probes which use cancer targeting moieties such as monoclonal antibodies to target receptors found in abundance on cancers and are activated after internalization and lysosomal processing (binding-based probes). For fluorescence-guided intraoperative surgery, enzyme-reactive probes are superior because they can react quickly, require smaller dosages especially for topical applications, have limited side effects, and have favorable pharmacokinetics. Enzyme-reactive probes are easier to use, fit better into existing work flows in the operating room and have minimal toxicity. Although difficult to prove, it is assumed that the guidance provided to surgeons by these probes results in more effective surgeries with better outcomes for patients. In this review, we compare these two types of activatable fluorescent probes for their ease of use and efficacy.  相似文献   
114.
The gain of foldable wings is regarded as one of the key innovations enabling the present-day diversity of neopteran insects. Wing folding allows compact housing of the wings and shields the insect body from damage. Wing-fixing systems have evolved in some insects, probably to increase the durability of the shielding function by the wings. Bark lice (Psocodea) are known to possess a unique wing-to-wing repose coupling system, but a detailed morphological and evolutionary study of this system is lacking. In this study, we examined this repose coupling structure by SEM in 32 species including representatives of all three suborders of bark lice (Trogiomorpha, Troctomorpha and Psocomorpha). We concluded that the repose wing-coupling apparatus independently evolved twice within Psocodea. In Trogiomorpha, the apparatus is located on the subcostal vein of the forewing and is composed of elongated rib-like structures. In Troctomorpha and Psocomorpha, in contrast, the repose coupling structure is located on the radius vein of the forewing and is formed by a swollen vein. These morphological and developmental differences in the repose coupling structures also provide phylogenetic information at different systematic levels.  相似文献   
115.
Movements of ions are considered to be governed by the electroneutrality rule. Therefore, a cation moving across the cell membrane into the cell either passively or actively should move together with its counterion, an anion, in equal amounts of charge or in exchange for another cation inside the cell. This means that the net influx of the cation in question should be affected by the permeability of its counterion and/or another cation inside the cell. To examine osmotic and ionic regulation in Chara cells, cell fragments of Chara having a lower osmotic pressure than normal (L-cell fragments) were prepared. The L-cell fragments were individually put into various dilute electrolyte solutions and their osmotic potentials were measured with a turgor balance. Concentrations of K+, Na+, Ca2+, Mg2+, Cl?, NO?3. and SO2?4. in the external electrolyte solutions in which L-cells had been incubated were also analysed by ion chromatography. The results showed that in 0.5 mM KCL + 0.1 mM CaCl2 solution, Chara L-cell fragments absorbed K+ and Cl? to maintain electroneutrality and then regained their osmotic potential very rapidly. When the anion was Cl, the cation absorbed at the highest rate was K+ On the other hand, when the cation was K, the anion absorbed at the highest rate was Cl, Other ions Ca2+, SO2?4 and NO?3 showed much less permeability than K+ and Cl ?for the Chara plasma membrane. The conclusion from these findings was that due to the constraint of electroneutral transport, the uptake rate of a salt into L-cells is limited by the permeability of the least permeable ion.  相似文献   
116.
Over the past decades there has been considerable progress in understanding the multifunctional roles of mitochondrial ion channels in metabolism, energy transduction, ion transport, signaling, and cell death. Recent data have suggested that some of these channels function under physiological condition, and others may be activated in response to pathological insults and play a key role in cytoprotection. This review outlines our current understanding of the molecular identity and pathophysiological roles of the mitochondrial ion channels in the heart with particular emphasis on cardioprotection against ischemia/reperfusion injury, and future research on mitochondrial ion channels.  相似文献   
117.
We found that overexpression of tail interacting protein of 47 kDa (TIP47), but not its truncated form (t-TIP47) protected NIH3T3 cells from hydrogen-peroxide-induced cell death, prevented the hydrogen-peroxide-induced mitochondrial depolarization determined by 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl-benzimidazolylcarbocyanine iodide (JC1), while suppression of TIP47 in HeLa cells facilitated oxidative-stress-induced cell death. TIP47 was located to the cytoplasm of untreated cells, but some was associated to mitochondria in oxidative stress. Recombinant TIP47, but not t-TIP47 increased the mitochondrial membrane potential (Δψ), and partially prevented Ca2+ induced depolarization. It is assumed that TIP47 can bind to mitochondria in oxidative stress, and inhibit mitochondria mediated cell death by protecting mitochondrial membrane integrity.  相似文献   
118.
In order to explore the pathogenetic mechanism underlying the changes in blood-brain barrier sodium transport in experimental diabetes, the effects of hyperglycemia and of hypoinsulinemia were studied in nondiabetic rats. In untreated diabetes, the neocortical blood-brain barrier permeability for sodium decreased by 20% (5.6 +/- 0.7 versus 7.0 +/- 0.8 X 10(5) ml/g/s) as compared to controls. Intravenous infusion of 50% glucose for 2 h was associated with a decrease in the blood-brain barrier permeability to sodium (5.4 +/- 1.2 X 10(5) ml/g/s), whereas rats treated with an inhibitor of insulin-secretion (SMS 201-995, a somatostatin-analogue) had normal sodium permeability (7.3 +/- 2.0 X 10(5) ml/g/s). Acute insulin treatment of diabetic rats normalized the sodium permeability within a few hours as compared to a separate control group (7.7 +/- 1.1 versus 6.9 +/- 1.4 X 10(5) ml/g/s). To elucidate whether the abnormal blood-brain barrier passage is caused by a metabolic effect of glucose or by the concomitant hyperosmolality, rats were made hyperosmolar by intravenous injection of 50% mannitol. Although not statistically significant, blood-brain barrier sodium permeability increased in hyperosmolar rats as compared to the control rats (8.3 +/- 1.0 and 7.0 +/- 1.9 X 10(5) ml/g/s, respectively). It is concluded that either hyperglycemia per se or a glucose metabolite is responsible for the blood-brain barrier abnormality which occurs in diabetes. Further, we suggest that the specific decrease of sodium permeability could be the result of glucose-mediated inhibition of the Na+K+-ATPase localized at the blood-brain barrier.  相似文献   
119.
The method of stopped flow was used to follow the changes in light scattering by the vesicles of plasmalemma and tonoplast isolated from maize (Zea maysL.) roots and treated by osmotic pressure. In both membrane preparations, the rate of the process depended on the osmotic gradient and was described with the simple exponential function. The rate constants derived from these functions were the following: the coefficient of water permeability in the tonoplast (P= 165 ± 7 m/s) exceeded by an order of magnitude the corresponding index for plasmalemma (11 ± 2 m/s). The presence of HgCl2(1.6 nmol/g membrane protein) decreased the tonoplast water permeability by 80%. Microviscosity studies of the hydrocarbon zone in the isolated membranes by using a fluorescent diphenylhexatriene probe demonstrated that the two membranes do not differ in the phase state of their lipid bilayer. The authors conclude that the observed difference in water permeability does not depend on the state of the lipid phase and probably reflects the dissimilar functional activity of plasmalemma and tonoplast aquaporins.  相似文献   
120.
We investigated Ca2+ handling in isolated brain synaptic and non‐synaptic mitochondria and in cultured striatal neurons from the YAC128 mouse model of Huntington's disease. Both synaptic and non‐synaptic mitochondria from 2‐ and 12‐month‐old YAC128 mice had larger Ca2+ uptake capacity than mitochondria from YAC18 and wild‐type FVB/NJ mice. Synaptic mitochondria from 12‐month‐old YAC128 mice had further augmented Ca2+ capacity compared with mitochondria from 2‐month‐old YAC128 mice and age‐matched YAC18 and FVB/NJ mice. This increase in Ca2+ uptake capacity correlated with an increase in the amount of mutant huntingtin protein (mHtt) associated with mitochondria from 12‐month‐old YAC128 mice. We speculate that this may happen because of mHtt‐mediated sequestration of free fatty acids thereby increasing resistance of mitochondria to Ca2+‐induced damage. In experiments with striatal neurons from YAC128 and FVB/NJ mice, brief exposure to 25 or 100 μM glutamate produced transient elevations in cytosolic Ca2+ followed by recovery to near resting levels. Following recovery of cytosolic Ca2+, mitochondrial depolarization with FCCP produced comparable elevations in cytosolic Ca2+, suggesting similar Ca2+ release and, consequently, Ca2+ loads in neuronal mitochondria from YAC128 and FVB/NJ mice. Together, our data argue against a detrimental effect of mHtt on Ca2+ handling in brain mitochondria of YAC128 mice.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号