首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   5篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有57条查询结果,搜索用时 31 毫秒
11.
We developed eight primer pairs for Banksia microsatellite markers (five using DNA from Banksia oblongifolia and three from Banksia robur) in order to study the processes of speciation within hybridizing B. oblongifolia, B. robur and Banksia paludosa complex. We genotyped four populations of B. oblongifolia and B. robur, and three of B. paludosa. Numbers of alleles ranged from 1 to 13 across the three species and observed average heterozygosities ranged from 0.000 to 0.833. At least four loci completely discriminated B. robur from B. oblongifolia and three discriminated B. paludosa from B. oblongifolia. Seven of these primers amplified DNA from at least two of three other local species.  相似文献   
12.
Abstract Trees growing along windy coasts often have canopies that are greatly reduced in size by the sculpting effects of wind and salt spray. Trees with environmentally reduced stature are called elfinwood (windswept shrub‐form or krummholz) and are ecologically important because they represent outposts growing at the limit of tree success. The purpose of this study was to assess if Banksia grandis elfinwood growing at Cape Leeuwin had a different nutrient status than normal low‐form (LF) trees growing nearby, and if nutrient deficiencies, toxicities and/or imbalances were among the limiting factors imposed on elfinwood. The concentrations of N, P, K, Ca, Mg, Na, Cl, Fe, Mn, Zn, Cu, Mo and B were analysed for mature green foliage, immature foliage, foliage litter, flowers and soil. When the elfinwood and LF trees were compared, the foliar nutrient status was generally similar, except that elfinwood foliage had significantly higher mean concentrations of N, Zn and Cu, while LF trees had higher Fe and Mn contents. Many nutrients were conserved before leaves were shed in both elfinwood and LF trees, including N, P, K, Na, Cl, Mn and Cu (LF trees also conserved Ca and Mg). However, elfinwood and LF tree‐litter contained significantly higher Fe concentrations than green foliage (elfinwood litter also had higher levels of Mg and B). It is tempting to suggest that the translocation of Fe into leaves before they were shed is a regulation mechanism to prevent Fe toxicity, or imbalance in the Fe : Mn ratio. Proteoid roots strongly acidify the soil to mobilize P, which also chemically reduces Fe+3 to plant‐available Fe+2. The increased supply of Fe+2 in the rhizosphere, caused by the action of proteoid roots, might tend to defeat self‐regulation of Fe uptake. It is possible that excess Fe accumulation in the plant might be regulated, in part, by exporting Fe into the leaves before they are shed. The nutrient status of B. grandis elfinwood is compared with mountain elfinwood of North America. The extreme habitat of coastal elfinwood provides many theoretical pathways for nutrient limitation, but B. grandis elfinwood at Cape Leeuwin does not appear to be nutrient deficient.  相似文献   
13.
Vegetation structure and plant species diversity of restoration sites are predicted to directly affect pollinator attraction, with potential impacts on gene flow, reproduction, genetic diversity of future generations, and ultimately restoration success. We compared Banksia attenuata R.Br. (Proteaceae) in a low species diversity restoration site and an adjacent natural remnant. We assessed fecundity genetic diversity in adult plants and their offspring, mating system parameters and pollen dispersal using paternity assignment. Results were compared to an earlier study of reproductive functionality within a high species diversity restoration site that was restored in a similar manner, enabling us to investigate any association between plant species diversity and fecundity. Seed set data indicated no significant differences between restored and adjacent natural sites; however, seed set data between restoration sites was significantly different (2.08 ± 0.39 and 6.89 ± 1.12, respectively). The mean number of fruits (follicles) per inflorescence was not significantly different between restoration sites. Genetic diversity of adult plants and their offspring were comparable in all sites. Higher allelic richness and genetic differentiation in one restored site reflected sourcing beyond local provenance. Low correlated paternity indicated high levels of multiple siring of seeds and paternity assignment demonstrated strong genetic connectivity between sites. Reproductive functionality, as measured by fecundity and genetic diversity in the offspring of B. attenuata, is resilient to low species diversity within a restored plant community. We consider our results in the context of establishing seed production areas (SPAs) that maximize the quantity and genetic quality of Banksia seeds for restoration.  相似文献   
14.
Banksia saxicola A.S. George (Proteaceae) is a rare Australian endemic, found in only two locations in Victoria that are separated by approximately 500 kms: the Grampians and Wilson's Promontory National Parks. The organisation of genetic variation between and within populations at the two locations was assessed using the Amplified Fragment Length Polymorphism (AFLP) technique. Two populations were sampled in the Grampians National Park and one population was sampled at Wilson's Promontory. The three populations were genetically divergent from each other, in particular the Grampians and Wilson's Promontory populations, and this relates to the ancient geographic isolation of these two regions. The Wilson's Promontory population had lower genetic diversity than either Grampians populations, consistent with its smaller population size. The findings are important for strategies to conserve B. saxicola. Received October 3, 2000 Accepted January 3, 2001  相似文献   
15.
Many plants regenerate after fire from a canopy‐stored seed bank, in which seed are housed in fire resistant confructescences (cones) that remain on maternal plants. This strategy would be favoured if plants accumulate a sufficiently large and genetically diverse seed bank during interfire intervals. We use a 16‐year demographic study and surveys of microsatellite variation to quantify and explain the rate of accumulation of genetic diversity within the canopy seed bank of the shrub Banksia spinulosa. Flowering and fruit set were highly variable. An initial sample in 1991 of 354 reproductively mature plants generated 426 cones over 16 years, of which only 55 cones from 40 maternal plants persisted until 2005. By genotyping seed from these 55 cones we demonstrated that genetic diversity accumulated rapidly within the seed bank. Resampling revealed that diversity was determined by the number, not the age, of cones. Cones were widely distributed among plants, outcrossing rates were high (mean tm = 1.00 ± 0.04) and biparental inbreeding low. Adults displayed little evidence of isolation by distance and the genotypic diversity of seed cohorts was independent of the density of neighbouring potential sires. We therefore estimate that within at least 13 individual years the number of cones produced per year (14–63) would have contained 100% of the adult genetic diversity. We conclude that a highly outcrossed mating system and relatively widespread pollen dispersal ensure the rapid development of a genetically diverse and spatially and temporally homogeneous seed bank.  相似文献   
16.
The pattern of accumulation of genetic variation over time in seed banks is poorly understood. We examined the genetic structure of the aerial seed bank of Banksia hookeriana within a single 15-year-old population in fire-prone southwestern Australia, and compared genetic variation between adults and each year of a 9-year-old seed bank using amplified fragment length polymorphism (AFLP). B. hookeriana is well suited to the study of seed bank dynamics due to the canopy storage of its seeds, and because each annual crop can be identified. A total of 304 seeds from nine crop years and five maternal plants were genotyped, along with 113 plants from the adult population. Genetic variation, as assessed by the proportion of polymorphic markers (P(p)) and Shannon's index (I), increased slightly within the seed bank over time, while gene diversity (H(j)), did not change. P(p), I, and H(j) all indicated that genetic variation within the seed bank quickly approached the maximal level detected. Analysis of molecular variance revealed that less than 4% of variation could be accounted for by variation among seeds produced in different years, whereas there was greater differentiation among maternal plants (12.7%), and among individual seeds produced by different maternal plants (83.4%). With increasing population age, offspring generated each year were slightly more outbred, as indicated by an increase in the mean number of nonmaternal markers per offspring. There were no significant differences for H(j) or I between adults and the seed bank. Viability of seeds decreased with age, such that the viability of 9-year-old seeds was half that of 2-year-old seeds. These results suggest that variable fire frequencies have only limited potential to influence the amount of genetic variation stored within the seed bank of B. hookeriana.  相似文献   
17.
Parks  S.E.  Haigh  A.M.  Cresswell  G.C. 《Plant and Soil》2000,227(1-2):59-65
The effects of P fertilizer rate on shoot growth and the total P concentration of the whole shoot, new and mature leaves, symptom leaves and stems of Banksia ericifolia L. f., a P-sensitive species, were investigated in a six month greenhouse pot experiment. Shoot dry weight of plants growing in an Australian sedge peat, coarse sand and perlite potting mix (1:1:1) increased with up to 100 mg P L−1 supplied as a six month controlled release P (0:18:0) fertilizer, but was reduced by toxicity at the highest application rate (200 mg P L−1). Plants receiving this treatment developed chlorotic new and mature leaves. Leaf symptoms observed at rates of 60–100 mg P L−1 were confined to old leaves and were related to the P concentration of the shoot. Growth was not affected at these rates. The P concentration of stems was strongly influenced by P supply. This tissue acted as a sink for excess P, helping to regulate the P concentration of leaves. The approximate range of P concentrations in stem tissue, associated with greater than 90% of maximum shoot dry weight, was 0.5–1.5 g P kg−1 tissue dry weight. This was greater than that calculated for mature leaves (0.5–0.8 g kg−1) or for whole shoots (0.5–1.2 g kg−1). This wider range, and the capacity to store P in excess to requirement, makes the stem a better index tissue for plant P status than either leaves or whole shoots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
18.
Studies of the variation in δ15N values for plants from a fire-prone Banksia woodland in South West Australia showed that pioneer herbaceous, non-mycorrhizal species which were active in nitrate reduction and storage, had the highest values (1.81%c). A detailed study of one such species Ptilotus polystachus demonstrated a close correspondence between the δ15N values of soil nitrate, xylem nitrate and leaf total nitrogen, suggesting an exclusive reliance on nitrate ions as nitrogen source. These pioneer species also showed a preponderance of the chloroplastic isoform of glutamine synthetase while woody species generally had higher activity associated with the cytosolic isoform. The group comprising monocotyledonous hemicryptophytes and geophytes contained species with slightly positive δ15N values and moderately active in nitrate reduction and storage. Nitrogen-fixing species had the lowest δ15N values (–0.36‰), irrespective of their apparent utilisation of nitrate. However, woody resprouter species which had low levels of nitrate reduction and storage had δ15N values which fell within the range of values obtained for the miscellaneous assemblage of N2-fixing species. Consequently, 15N abundance values failed to distinguish N2 fixing from non-fixing woody species, and therefore, could not be used in the ecosystem to determine the dependence of putative nitrogen fixing species on N2 fixation. The study demonstrated complex patterns of nitrogen utilization in the ecosystem in which exploitation of different nitrogen resources related to plant life form and the physiological attributes of nitrogen assimilation by component species.  相似文献   
19.
Abstract Banksia brownii is an endangered species, now limited to ~ 15 disjunct populations in southwestern Western Australia. Data on flowering phenology, plant size, fruit set, pollination and the mating system were gathered for two of these populations between March and October 1993. Flowering for both populations followed a similar pattern, with open flowers first evident in April, and the number of inflorescences with open flowers peaking in June. At both locations, trees differed considerably with respect to their size, the total number of inflorescences produced and the length of their flowering season. Fruiting success was typically low, with approximately half of all inflorescences failing to develop into infructescences. Only 1. 8% of the flowers originally present on inflorescences developed into follicles. The distribution of follicles along each infructescence was non-random, with most forming in the middle third of the infructescence for reasons relating to nutrient supply and pollinator behaviour. More flowers opened during the day than at night, although pollen was lost from individual flowers during both periods. Honeyeaters such as Phylidonyris novaehollandiae were common at the two study sites, and often carried large loads of B. brownii pollen. Though less frequently caught, the nocturnal mammals Rattus fuscipes and Tarsipes rostratus also bore substantial amounts of pollen. Most inflorescences from which these mammals and birds were excluded remained barren. Fruiting success was further reduced when invertebrates such as Apis mellifera were also prevented from visiting inflorescences. The ability of B. brownii to set at least some fruit in the absence of biotic poli-nators indicates that the species is partially self-compatible. Honeyeaters foraged preferentially at inflorescences with one to two thirds of their flowers open, probing mainly along the ‘advancing front’ of open flowers. These animals moved more frequently between inflorescences on the same plant than between those on different plants, and were often recaptured in the same locations. Mammals also appeared to be sedentary. Both B. brownii populations had mixed mating systems, with genetically determined outcrossing rates of ~0.7. The unusually high level of selfing in each population is presumably a reflection of the species’ self-compatibility and the foraging behaviour of its pollinators.  相似文献   
20.
Summary An earlier hypothesis that blue-green algae in the nectar ofBanksia telmatiaea contribute to the nitrogen economy of the host by fixing N2 was tested. Field and laboratory experiments failed to demonstrate C2H4 production in C2H2-treated containers over extended periods. Soil N was not higher at the end of the flowering season and plants in which flower heads were removed prior to nectar production did not contain less N than the controls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号