首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190383篇
  免费   7070篇
  国内免费   17059篇
  214512篇
  2023年   1681篇
  2022年   3476篇
  2021年   4033篇
  2020年   2922篇
  2019年   3962篇
  2018年   3990篇
  2017年   3126篇
  2016年   3774篇
  2015年   5595篇
  2014年   9871篇
  2013年   12062篇
  2012年   7864篇
  2011年   8851篇
  2010年   6518篇
  2009年   7595篇
  2008年   8044篇
  2007年   9084篇
  2006年   7873篇
  2005年   7204篇
  2004年   6443篇
  2003年   5883篇
  2002年   5434篇
  2001年   4609篇
  2000年   3730篇
  1999年   3848篇
  1998年   3536篇
  1997年   2965篇
  1996年   2935篇
  1995年   3027篇
  1994年   3075篇
  1993年   2815篇
  1992年   2570篇
  1991年   2443篇
  1990年   2098篇
  1989年   1955篇
  1988年   1860篇
  1987年   1684篇
  1986年   1408篇
  1985年   3282篇
  1984年   4708篇
  1983年   3170篇
  1982年   3782篇
  1981年   3199篇
  1980年   2865篇
  1979年   2645篇
  1978年   2139篇
  1977年   1964篇
  1976年   1758篇
  1975年   1411篇
  1974年   1395篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
The ability of 1-carboxymethyl-2-imino-3-phosphonoimidazolidine (cyclocreatine-P), accumulated by a simple brain model, to function as a supplemental synthetic phosphagen and respond to the decreases in cytosolic ATP/free ADP ratios that occur during prolonged stimulation by various excitatory amino acids was investigated. Suspensions of chopped whole brain from 11- to 14-day-old chick embryos were incubated with 30 mM cyclocreatine for 90 min, resulting in accumulation of 100 mumol/g dry weight of cyclocreatine-P, and then incubated for up to 1 h with a series of excitatory amino acids of widely differing potencies. Under these conditions net utilization of cyclocreatine-P was detected in response to stimulation by the following neuroexcitatory compounds at the indicated threshold concentrations: kainate (20 microM), N-methyl-DL-aspartate (20 microM), L-homocysteate (20 microM), L-glutamate (200 microM), D-glutamate (200 microM), L-aspartate (2 mM), DL-2-amino-3-phosphonopropionate (2 mM), and DL-2-amino-4-phosphonobutyrate (2 mM). Significant increases in water content of chick embryo brain minces accompanied stimulation by excitatory amino acids. It is suggested that changes in water content or cyclocreatine-P levels in this sensitive brain model might be utilized in automatable screening procedures for detecting novel antagonists and/or new agonists of excitatory amino acids.  相似文献   
922.
Glutamic acid decarboxylase (GAD), gamma-[3H]-aminobutyric acid [( 3H]GABA) high-affinity uptake into synaptosomes, and endogenous GABA content were measured in the rat striatum 2-3 weeks following 6-hydroxydopamine injection in the ipsilateral substantia nigra to destroy the nigrostriatal dopaminergic pathway and after kainic acid injection into the centromedial-parafascicular complex of the ipsilateral thalamus to lesion the thalamostriatal input. Both lesions resulted in apparent GAD increase concomitant with a decreased [3H]GABA uptake into striatal synaptosomes. GABA content was increased selectively following the dopaminergic lesion. Kinetic analysis of the uptake process for [3H]GABA showed selectively a decreased Vmax following the dopaminergic lesion; in animals with thalamic lesion, however, the change only concerned the Km, which showed a decreased affinity of the transport sites for [3H]GABA. Determination of Km and Vmax for GAD action on its substrate glutamic acid showed an increased affinity of GAD for glutamic acid in the case of the dopaminergic lesion without any change in Vmax, whereas the thalamic lesion resulted in GAD increase concomitant with a selective increase in Vmax. These data suggest that striatal GABA neurons are under the influence of nigrostriatal dopaminergic neurons which may reduce the GABA turnover, whereas the exact nature of the powerful control also revealed on these neurons following thalamic lesion remains to be determined. Both lesions induced adaptive neurochemical responses of striatal GABA neurons, possibly reflecting in the case of the dopaminergic deprivation an increased GABA turnover.  相似文献   
923.
To understand better the mechanisms involved in the transduction of a calcium signal into an intracellular response via multiple calcium-modulated proteins, we have examined the calcium-modulated proteins, S100 and calmodulin, and their intracellular targets in rat C6 glioma cells. Subconfluent, confluent, and postconfluent C6 cells contain predominantly, if not exclusively, the S100 beta polypeptide. The level of S100 beta in C6 cells increases approximately 20-fold from subconfluency to postconfluency whereas the level of calmodulin increases only about two-fold. The subcellular distribution of S100 beta and calmodulin in mitotic cells is similar. However, the subcellular distribution of these proteins in interphase cells is different and appears to change with cell density. Gel overlay analysis demonstrated that the S100- and calmodulin-binding protein profiles are significantly different and that some of the binding proteins appear to change in intensity with cell density. These data demonstrate that S100 beta is the predominant S100 polypeptide in C6 cells and suggest that changes in S100 beta and S100 beta-binding proteins may be involved in regulating S100-mediated intracellular processes in C6 cells. Our studies also suggest that the levels of S100 and calmodulin may be differentially regulated in C6 cells.  相似文献   
924.
The specific binding protein for substance P (SP) was solubilized in an active form from the crude mitochondrial (P2) fraction of bovine brainstem. After incubation with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) and 0.1 M NaCl at 0 degrees C for 30 min, the SP binding to the supernatant fraction (100,000 g, 60 min) was determined by the glass fiber filtration method reported by Bruns et al. (1983). The specific [3H]SP binding to the solubilized fraction was highly specific for SP and was displaced by nanomolar concentrations of SP and physalaemin, but only by micromolar concentrations of eledoisin. In addition, the binding was inhibited by GTP (approximately 40% of the specific binding decreased by 10 microM GTP) in both preparations. These results were virtually identical to those of P2 membrane preparations and suggested that this high-affinity SP binding site belongs to the SP-P type. Scatchard analyses of SP binding to the solubilized fraction revealed a single saturable component with a Bmax of 22.0 +/- 5.10 fmol/mg protein and a KD of 0.79 nM, and these values are almost the same as those obtained in the P2 fraction (Bmax = 31.3 +/- 3.56 fmol/mg protein, KD = 0.82 nM). Gel filtration analysis showed that the detergent-SP binding protein complex has two calculated molecular weights of greater than 1,000,000 and 55,000-60,000 (a corresponding Stokes radius of 35.5 nm).  相似文献   
925.
We report the first measurement of the free intracellular calcium level in an actively metabolising intact cerebral tissue preparation. To this end, we applied the recently developed 19F-nuclear magnetic resonance calcium chelator, 5,5'-F2-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA), in superfused cerebral cortical slices to give values for the intracellular Ca2+ concentration of 350 and 480 nM, at external calcium concentrations of 1.2 and 2.4 mM, respectively. Under both conditions, the intracellular Ca2+ concentration was increased by depolarisation using a high external K+ concentration. Interleaved 31P spectra showed that the presence of the 5FBAPTA had a deleterious effect on the metabolic state of the tissue with an external Ca2+ concentration of 1.2 mM, but normal viability was maintained using 2.4 mM.  相似文献   
926.
The effects of phorbol esters [phorbol 12,13-dibutyrate (PDB), 12-O-tetradecanoylphorbol 13-acetate (TPA), and phorbol 13-acetate] were investigated on the release of [3H]norepinephrine, 45Ca2+ accumulation, and protein kinase C activity in cultured sympathetic neurons of the chick embryo. Sympathetic neurons derived from 10-day-old chick embryo were cultured in serum-free medium supplemented with insulin, transferrin, and nerve growth factor. After 3 days, neurons were loaded with [3H]-norepinephrine and the release of [3H]norepinephrine was determined before and after electrical stimulation. Stimulation at 1 Hz for 15 s increased the release of [3H]-norepinephrine over the nonstimulation period. Stimulation-evoked release gradually declined with time during subsequent stimulation periods. Incubation of neurons in Ca2+-free Krebs solution containing 1 mM EGTA completely blocked stimulation-evoked release of [3H]-norepinephrine. Stimulation-evoked release of [3H]-norepinephrine was markedly facilitated by 3 and 10 nM PDB or TPA. The spontaneous release was also enhanced by PDB and TPA. The net accumulation of 45Ca2+ during stimulation of sympathetic neurons was increased by two- to fourfold in the presence of PDB or TPA. PDB at 1-100 nM produced a concentration-dependent increase in the activation of protein kinase C. PDB at 30 nM increased the activity of protein kinase C of the particulate fraction from 0.09 to 0.58 pmol/min/mg protein. There was no significant change in protein kinase C activity of the cytosolic fraction (0.14 pmol/min/mg versus 0.13 pmol/min/mg protein). The ratio of the particulate to cytosolic protein kinase C increased from a control value of 0.62 to 4.39 after treatment with 30 nM PDB. TPA (10 and 30 nM) also increased protein kinase C activity of the particulate fraction by six- to eightfold. Phorbol 13-acetate had no effect on protein kinase C activity, [3H]norepinephrine release, and 45Ca2+ accumulation. These results provide direct evidence that activation of protein kinase C enhances Ca2+ accumulation, which in turn leads to the facilitation of transmitter release in sympathetic neurons.  相似文献   
927.
Chemiluminescent detection was applied to measure the continuous spontaneous Ca2+-independent liberation of acetylcholine (ACh) from Torpedo electric organ synaptosomes. Differentiation between the release of ACh and choline was achieved by inhibiting cholinesterases with phospholine, and a way to quantify the continuous release was devised. The method permitted measurements during short time intervals from minute amounts of tissue and without an accumulation of ACh in the medium. Synaptosomes continuously liberated small amounts of ACh during incubations in the presence of 3 mM K+ and in the absence of Ca2+. The spontaneous liberation of ACh was similar both quantitatively and qualitatively at pH values of 8.6 and 7.8. It was unaltered by MgCl2 (10.4 mM), 2-(4-phenylpiperidino)cyclohexanol (10 microM), ouabain (104 microM), atropine (10 microM), and valinomycin (102 nM). Carbamoylcholine brought about a decrease, which could be partially reversed by atropine. The Ca2+-independent output of ACh was increased considerably when the concentration of K+ ions was raised (eightfold at 103 and 35-fold at 203 mM K+). Carbamoylcholine (104 microM) blocked the increase in ACh release produced by high K+; this effect of carbamoylcholine was not reversed by atropine (10 microM). When Ca2+ was added to synaptosomes depolarized by a high concentration of K+, the amount of ACh released during the first 1-3 min after the addition of Ca2+ was at least 20 times higher than in the absence of Ca2+, but the release returned rapidly to predepolarization values. Similarly high values of ACh release could be achieved by adding Ca2+ plus the ionophore A23187 and even higher values by adding Ca2+ plus gramicidin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
928.
Soluble calmodulin-stimulated protein kinase II has been purified from adult and 10-day-old rat forebrain. By autoradiography, the alpha/beta subunit ratios of the 10-day and adult enzymes were 0.67 +/- 0.03 and 2.20 +/- 0.15, respectively. By silver staining, the alpha/beta subunit ratios were 1.02 +/- 0.06 and 2.36 +/- 0.10, respectively. The apparent holoenzyme molecular masses of the purified 10-day and adult enzymes were 500,000 daltons and 700,000 daltons. However, varying the purification conditions revealed higher and lower molecular mass forms at both ages and suggested that the form of the kinase that is usually purified is merely that which has the highest affinity for calmodulin-Sepharose and may not be the form of the kinase that exists in vivo. The subunits of the adult and 10-day enzymes were indistinguishable by one- and two-dimensional electrophoresis and one-dimensional proteolytic peptide maps. These results are consistent with the suggestion that at least two developmentally regulated isoenzymes of this kinase exist in rat forebrain.  相似文献   
929.
The binding of alpha-[3H]amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA), a structural Glu analog, to rat striatal membranes was studied. In the absence of potassium thiocyanate and Cl-/Ca2+, saturation-curve analysis of [3H]AMPA binding suggested that a single class of noninteracting binding sites with a KD value of 340 +/- 27 nM was involved, although AMPA inhibition of [3H]AMPA binding set at a concentration of 100 nM suggested, in contrast, the presence of multiple populations of striatal binding sites. Several other excitatory amino acid receptor agonists and antagonists were tested, and the most potent and selective quisqualic acid (QA) receptor agonists (QA, L-Glu, and AMPA) were found to represent the most potent inhibitors of [3H]AMPA binding. N-Methyl-D-aspartate receptor agonists and antagonists were ineffective as displacers of the [3H]AMPA binding. Lesions of intrastriatal neurons (using kainic acid local injections) and of corticostriatal afferent fibers led 2-3 weeks later to large decreases (63 and 30%, respectively) in striatal [3H]AMPA binding, whereas selective lesion of the nigrostriatal dopaminergic pathway (using nigral injection of 6-hydroxy-dopamine) was without any influence. Taken together, these results suggest that [3H]AMPA binding is primarily associated with postsynaptic intrastriatal neurons. Some [3H]AMPA binding sites may also be located presynaptically on corticostriatal nerve endings. So, in addition to the possibility that [3H]AMPA binding sites may be involved in corticostriatal synaptic transmission, it is interesting that these putative QA-preferring excitatory amino acid receptor sites may also play some role in autoregulatory processes underlying this excitatory synaptic transmission.  相似文献   
930.
The kinetics of dissociation of [3H]methyl beta-carboline-3-carboxylate (beta-CCM) binding was studied in a synaptosomal membrane preparation of rat cerebral cortex. Dissociation was biphasic: a faster phase (10-30% contribution) was followed by a slower phase. Picrotoxin pretreatment at 22 degrees C enhanced the equilibrium binding of [3H]beta-CCM. The half-life of the slower phase of beta-CCM dissociation (t1/2II) was increased by 60 muM picrotoxin from 1.7 min to 3.3 min. The dissociation of [3H]beta-CCM was identical when initiated by an excess of either diazepam or beta-CCM. Quasi-equilibrium Scatchard analysis of [3H]beta-CCM binding was performed by a kinetic separation of the rapid and slow phases of dissociation. The slow and rapid phases represented beta-CCM binding sites of high and low affinity, respectively. The dissociation of [3H]beta-CCM (control t1/2II = 2.0 min) was decelerated by the gamma-aminobutyric acid (GABA) antagonist 3-alpha-hydroxy-16-imino-5 beta-17-aza-androstan-11-one (R 5135) (t1/2II = 2.5 min) and accelerated by GABA (t1/2II = 1.6 min). GABA inhibited both high- and low-affinity beta-CCM bindings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号