首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   935篇
  免费   67篇
  国内免费   2篇
  2022年   12篇
  2021年   23篇
  2020年   23篇
  2019年   25篇
  2018年   33篇
  2017年   23篇
  2016年   28篇
  2015年   26篇
  2014年   30篇
  2013年   48篇
  2012年   28篇
  2011年   37篇
  2010年   23篇
  2009年   37篇
  2008年   34篇
  2007年   45篇
  2006年   39篇
  2005年   31篇
  2004年   22篇
  2003年   28篇
  2002年   29篇
  2001年   19篇
  2000年   16篇
  1999年   23篇
  1998年   9篇
  1997年   14篇
  1996年   4篇
  1995年   7篇
  1994年   9篇
  1993年   11篇
  1992年   8篇
  1991年   10篇
  1990年   4篇
  1989年   5篇
  1988年   5篇
  1987年   3篇
  1986年   10篇
  1985年   9篇
  1984年   34篇
  1983年   15篇
  1982年   21篇
  1981年   11篇
  1980年   25篇
  1979年   25篇
  1978年   16篇
  1977年   19篇
  1976年   10篇
  1975年   10篇
  1974年   13篇
  1973年   8篇
排序方式: 共有1004条查询结果,搜索用时 15 毫秒
121.
A total of 270 soil samples from 30 different habitats in 10 geographic regions of California were evaluated for the presence of rhabditid entomopathogenic nematodes. Nematodes were isolated from 26.3% of the samples. The recovered isolates were identified as Steinernema carpocapsae, S. feltiae, S. kraussei, S. longicaudum, S. oregonense, Heterorhabditis marelatus and H.bacteriophora. Among the steinernematids, S. kraussei and S. feltiae were the most commonly encountered species, generally occurring in acidic soils high in organic matter. Among the heterorhabditids, H. bacteriophora was isolated along the southern coast, whereas H. marelatus was recovered along the northern coast of California. Steinernematids were recovered from coniferous forests, oak woodlands and grasslands whereas heterorhabditids were isolated from coastal marshes.  相似文献   
122.
Aim Species distribution models (SDMs) or, more specifically, ecological niche models (ENMs) are a useful and rapidly proliferating tool in ecology and global change biology. ENMs attempt to capture associations between a species and its environment and are often used to draw biological inferences, to predict potential occurrences in unoccupied regions and to forecast future distributions under environmental change. The accuracy of ENMs, however, hinges critically on the quality of occurrence data. ENMs often use haphazardly collected data rather than data collected across the full spectrum of existing environmental conditions. Moreover, it remains unclear how processes affecting ENM predictions operate at different spatial scales. The scale (i.e. grain size) of analysis may be dictated more by the sampling regime than by biologically meaningful processes. The aim of our study is to jointly quantify how issues relating to region and scale affect ENM predictions using an economically important and ecologically damaging invasive species, the Argentine ant (Linepithema humile). Location California, USA. Methods We analysed the relationship between sampling sufficiency, regional differences in environmental parameter space and cell size of analysis and resampling environmental layers using two independently collected sets of presence/absence data. Differences in variable importance were determined using model averaging and logistic regression. Model accuracy was measured with area under the curve (AUC) and Cohen's kappa. Results We first demonstrate that insufficient sampling of environmental parameter space can cause large errors in predicted distributions and biological interpretation. Models performed best when they were parametrized with data that sufficiently sampled environmental parameter space. Second, we show that altering the spatial grain of analysis changes the relative importance of different environmental variables. These changes apparently result from how environmental constraints and the sampling distributions of environmental variables change with spatial grain. Conclusions These findings have clear relevance for biological inference. Taken together, our results illustrate potentially general limitations for ENMs, especially when such models are used to predict species occurrences in novel environments. We offer basic methodological and conceptual guidelines for appropriate sampling and scale matching.  相似文献   
123.
124.
125.
126.
Mastitis can prove expensive in sheep reared for meat production due to costs associated with treatment methods, poor lamb growth and premature culling of ewes. The most commonly used method to detect mastitis, in dairy systems, is somatic cell counts. However, in many meat-producing sheep flocks ewes are not routinely handled, thus regular milk sampling is not always possible. It is, therefore, worthwhile to investigate alternative phenotypes, such as those associated with udder conformation and methods of evaluating somatic cell counts in the milk, such as the California Mastitis Test. The main objectives of this study were therefore: (a) to estimate genetic parameters of traits relating to mastitis and udder conformation in a meat sheep breed; (b) estimate the level of association between somatic cell counts and the California Mastitis Test and (c) assess the relationships between mastitis and both udder conformation and lamb live weights. Data were collected from Texel ewes based on 29 flocks, throughout the UK, during 2015 and 2016. The ewes were scored twice each year, at mid- and late-lactation. Eight different conformation traits, relating to udder and teat characteristics, and milk samples were recorded. The data set comprised of data available for 2957 ewes. The pedigree file used contained sire and dam information for 31 775 individuals. The animal models used fitted relevant fixed and random effects. Heritability estimates for traits relating to mastitis (somatic cell score and the California Mastitis Test), ranged from 0.08 to 0.11 and 0.07 to 0.11, respectively. High genetic correlations were observed between somatic cell score and the California Mastitis Test (0.76 to 0.98), indicating the California Mastitis Test to be worthwhile for assessing infection levels, particularly at mid-lactation. The strongest correlations observed between the mastitis traits and the udder conformation traits were associated with udder depth (0.61 to 0.75) also at mid-lactation. Negative phenotypic correlations were estimated between mastitis and the weight of lamb reared by the ewe (−0.15 to −0.23), suggesting that lamb weights fell as infection levels rose. Genetic correlations were not significantly different from zero. Reducing mastitis will lead to improvements in flock productivity and the health and welfare of the animals. It will also improve the efficiency of production and the resilience to disease challenge. The economic benefits, therefore, of these results combined could be substantial not only in this breed but also in the overall meat sheep industry.  相似文献   
127.
Refugia are areas relatively buffered from contemporary climate change that enable the persistence of valued physical, ecological, or sociocultural resources. Spatially identifying refugia is important for conservation and applied management. Yet the concept of refugia has not been broadly extended to marine ecosystems. Here, we analyze data from a unique and long‐term (1999–2015) standardized survey of pelagic marine and anadromous species off Oregon and Washington in the northern California Current to identify such refugia. We use quantitative approaches to assess locations with high species richness and community persistence relative to local and basin‐scale environmental fluctuations. We have identified a potential climate change refugial zone along the continental shelf of Washington State in the Northeastern Pacific Ocean, characterized by a species‐rich community with low interannual temporal community change. This region contrasts with adjacent areas to the south and offshore that have lower species richness, and higher temporal species community change. Also, using spatially variant generalized additive mixed models, we identify areas with species compositions that are more influenced by basin‐scale climatic fluctuations than others. We propose that upwelling regions with retentive topographic features, such as wide continental shelves, can function as marine refugia for pelagic fauna, whereas offshore locations are potentially more climatically sensitive and experience high temporal change in species composition. Further identification of these marine refugia using in situ data for pelagic biodiversity and climatically sensitive areas can help guide management in the face of inevitable climatically driven change.  相似文献   
128.
The arroyo southwestern toad is a specialized and federally endangered amphibian endemic to the coastal plains and mountains of central and southern California and northwestern Baja California. It is largely unknown how long these toads live in natural systems, how their population demographics vary across occupied drainages, and how hydrology affects age structure. We used skeletochronology to estimate the ages of adult arroyo toads in seven occupied drainages with varying surface water hydrology in southern California. We processed 179 adult toads with age estimates between 1 and 6 years. Comparisons between skeletochronological ages and known ages of PIT tagged toads showed that skeletochronology likely underestimated toad age by up to 2 years, indicating they may live to 7 or 8 years, but nonetheless major patterns were evident. Arroyo toads showed sexual size dimorphism with adult females reaching a maximum size of 12 mm greater than males. Population age structure varied among the sites. Age structure at sites with seasonally predictable surface water was biased toward younger individuals, which indicated stable recruitment for these populations. Age structures at the ephemeral sites were biased toward older individuals with cohorts roughly corresponding to higher rainfall years. These populations are driven by surface water availability, a stochastic process, and thus more unstable. Based on our estimates of toad ages, climate predictions of extreme and prolonged drought events could mean that the number of consecutive dry years could surpass the maximum life span of toads making them vulnerable to extirpation, especially in ephemeral freshwater systems. Understanding the relationship between population demographics and hydrology is essential for predicting species resilience to projected changes in weather and rainfall patterns. The arroyo toad serves as a model for understanding potential responses to climatic and hydrologic changes in Mediterranean stream systems. We recommend development of adaptive management strategies to address these threats.  相似文献   
129.
Intraspecific variability in foraging behavior has been documented across a range of taxonomic groups, yet the energetic consequences of this variation are not well understood for many species. Understanding the effect of behavioral variation on energy expenditure and acquisition is particularly crucial for mammalian carnivores because they have high energy requirements that place considerable pressure on prey populations. To determine the influence of behavior on energy expenditure and balance, we combined simultaneous measurements of at‐sea field metabolic rate (FMR) and foraging behavior in a marine carnivore that exhibits intraspecific behavioral variation, the California sea lion (Zalophus californianus). Sea lions exhibited variability in at‐sea FMR, with some individuals expending energy at a maximum of twice the rate of others. This variation was in part attributable to differences in diving behavior that may have been reflective of diet; however, this was only true for sea lions using a foraging strategy consisting of epipelagic (<200 m within the water column) and benthic dives. In contrast, sea lions that used a deep‐diving foraging strategy all had similar values of at‐sea FMR that were unrelated to diving behavior. Energy intake did not differ between foraging strategies and was unrelated to energy expenditure. Our findings suggest that energy expenditure in California sea lions may be influenced by interactions between diet and oxygen conservation strategies. There were no apparent energetic trade‐offs between foraging strategies, although there was preliminary evidence that foraging strategies may differ in their variability in energy balance. The energetic consequences of behavioral variation may influence the reproductive success of female sea lions and result in differential impacts of individuals on prey populations. These findings highlight the importance of quantifying the relationships between energy expenditure and foraging behavior in other carnivores for studies addressing fundamental and applied physiological and ecological questions.  相似文献   
130.
To evaluate the acoustic behavior of blue whales (Balaenoptera musculus) located inshore and offshore of southern California, singular A and B calls, D calls, and AB phrases were analyzed from 12 mo of passive acoustic data collected at four locations within the Southern California Bight. The relative proportions of singular calls and phrases were used to evaluate spatial and temporal patterns in sound and song type usage, and singular call and phrase production rates were calculated to investigate spatial and temporal variability in call abundance. Blue whale sounds were recorded from spring through early winter, with the majority of all detections occurring between September and December. The proportions and production rates of singular calls and phrases varied between the inshore and offshore sites. In addition, the percentage of A units within repetitive song phrases was greater inshore than offshore, resulting from a higher proportion of AB song type inshore, in which A and B phrase units were alternating. The ABB song type, in which a single A unit was followed by multiple B units, was more common offshore. The observed differences in calling and singing behaviors may identify distinct and variable acoustic behavioral settings for blue whales off southern California.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号