首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4284篇
  免费   260篇
  国内免费   331篇
  2024年   3篇
  2023年   50篇
  2022年   91篇
  2021年   136篇
  2020年   182篇
  2019年   132篇
  2018年   175篇
  2017年   108篇
  2016年   100篇
  2015年   156篇
  2014年   289篇
  2013年   313篇
  2012年   250篇
  2011年   345篇
  2010年   216篇
  2009年   233篇
  2008年   220篇
  2007年   174篇
  2006年   182篇
  2005年   142篇
  2004年   140篇
  2003年   134篇
  2002年   90篇
  2001年   79篇
  2000年   78篇
  1999年   68篇
  1998年   67篇
  1997年   58篇
  1996年   63篇
  1995年   52篇
  1994年   52篇
  1993年   39篇
  1992年   31篇
  1991年   53篇
  1990年   35篇
  1989年   33篇
  1988年   25篇
  1987年   17篇
  1986年   25篇
  1985年   26篇
  1984年   47篇
  1983年   42篇
  1982年   39篇
  1981年   27篇
  1980年   22篇
  1979年   20篇
  1978年   3篇
  1976年   6篇
  1974年   2篇
  1973年   2篇
排序方式: 共有4875条查询结果,搜索用时 17 毫秒
111.
Bacterial cellulose has multiple applications in various industries such as food, biomedical, textile due to its uniqueness of being a better bio-compatible coating agent, binding material, etc. In this study, optimization of the culture medium for producing BC from Leifsonia soli was carried out by selecting different parameters. Five significant factors such as maltose, pH, incubation days, soy whey and calcium chloride were estimated through ANOVA based response surface methodology. Maximum cellulose production (5.97 g/L) was obtained where maltose 1 % (w/v) supplemented with 0.8 % (v/v) soy whey and calcium chloride 0.8 % (w/v) at pH 6.5 for 7 days of incubation. In addition, assurance of cellulose production from bacteria was done by using High-performance liquid chromatography analysis. Further, the structure and purity of obtained cellulose were examined by SEM and elemental analysis where it was observed that the sample holds the value of carbon 44.1 ± 0.20 % and hydrogen 6.2 ± 0.3 %, respectively. This study concludes that the addition of maltose and soy whey could be used as carbon, nitrogen sources and calcium chloride was used as an additive for the bacterial cellulose production compared to the Hestrin Schramm medium. In addition, the calculated water holding capacity of the sample was found to be 73 %.  相似文献   
112.
113.
114.
115.
FK506‐sensitive proline rotamases (FPRs), also known as FK506‐binding proteins (FKBPs), can mediate immunosuppressive drug resistance in budding yeast but their physiological roles in filamentous fungi remain opaque. Here, we report that three FPRs (cytosolic/nuclear 12.15‐kD Fpr1, membrane‐associated 14.78‐kD Fpr2 and nuclear 50.43‐kD Fpr3) are all equally essential for cellular Ca2+ homeostasis and contribute significantly to calcineurin activity at different levels in the insect‐pathogenic fungus Beauveria bassiana although the deletion of fpr1 alone conferred resistance to FK506. Radial growth, conidiation, conidial viability and virulence were less compromised in the absence of fpr1 or fpr2 than in the absence of fpr3, which abolished almost all growth on scant media and reduced growth moderately on rich media. The Δfpr3 mutant was more sensitive to Na+, K+, Mn2+, Ca2+, Cu2+, metal chelate, heat shock and UVB irradiation than was Δfpr2 while both mutants were equally sensitive to Zn2+, Mg2+, Fe2+, H2O2 and cell wall‐perturbing agents. In contrast, the Δfpr1 mutant was less sensitive to fewer stress cues. Most of 32 examined genes involved in DNA damage repair, Na+/K+ detoxification or osmotolerance and Ca2+ homeostasis were downregulated sharply in Δfpr2 and Δfpr3 but rarely so affected in Δfpr1, coinciding well with their phenotypic changes. These findings uncover important, but differential, roles of three FPRs in the fungal adaptation to insect host and environment and provide novel insight into their essential roles in calcium signalling pathway.  相似文献   
116.
To establish systemic infections, Salmonella enterica serovar Typhimurium (S. Typhimurium) requires Salmonella pathogenicity island 2 (SPI‐2) to survive and replicate within macrophages. High expression of many SPI‐2 genes during the entire intracellular growth period within macrophages is essential, as it contributes to the formation of Salmonella‐containing vacuole and bacterial replication. However, the regulatory mechanisms underlying the sustained induction of SPI‐2 within macrophages are not fully understood. Here, we revealed a time‐dependent regulation of SPI‐2 expression mediated by a novel regulator PagR (STM2345) in response to the low Mg2+ and low phosphate (Pi) signals, which ensured the high induction of SPI‐2 during the entire intramacrophage growth period. Deletion of pagR results in reduced bacterial replication in macrophages and attenuation of systemic virulence in mice. The effects of pagR on virulence are dependent on upregulating the expression of slyA, a regulator of SPI‐2. At the early (0–4 hr) and later (after 4 hr) stage post‐infection of macrophages, pagR is induced by the low Pi via PhoB/R two‐component systems and low Mg2+ via PhoP/Q systems, respectively. Collectively, our findings revealed that the PagR‐mediated regulatory mechanism contributes to the precise and sustained activation of SPI‐2 genes within macrophages, which is essential for S. Typhimurium systemic virulence.  相似文献   
117.
118.
Neisseria meningitidis (meningococcus) is a Gram‐negative bacterium responsible for two devastating forms of invasive diseases: purpura fulminans and meningitis. Interaction with both peripheral and cerebral microvascular endothelial cells is at the heart of meningococcal pathogenesis. During the last two decades, an essential role for meningococcal type IV pili in vascular colonisation and disease progression has been unravelled. This review summarises 20 years of research on meningococcal type IV pilus‐dependent virulence mechanisms, up to the identification of promising anti‐virulence compounds that target type IV pili.  相似文献   
119.
Proteases secreted by pathogens have been shown to be important virulence factors modifying plant immunity, and cysteine proteases have been demonstrated to participate in different pathosystems. However, the virulence functions of the cysteine proteases secreted by Phytophthora parasitica are poorly understood. Using a publicly available genome database, we identified 80 cysteine proteases in P. parasitica, 21 of which were shown to be secreted. Most of the secreted cysteine proteases are conserved among different P. parasitica strains and are induced during infection. The secreted cysteine protease proteins PpCys44/45 (proteases with identical protein sequences) and PpCys69 triggered cell death on the leaves of different Nicotiana spp. A truncated mutant of PpCys44/45 lacking a signal peptide failed to trigger cell death, suggesting that PpCys44/45 functions in the apoplastic space. Analysis of three catalytic site mutants showed that the enzyme activity of PpCys44/45 is required for its ability to trigger cell death. A virus-induced gene silencing assay showed that PpCys44/45 does not induce cell death on NPK1 (Nicotiana Protein Kinase 1)-silenced Nicotiana benthamiana plants, indicating that the cell death phenotype triggered by PpCys44/45 is dependent on NPK1. PpCys44- and PpCys45-deficient double mutants showed decreased virulence, suggesting that PpCys44 and PpCys45 positively promote pathogen virulence during infection. PpCys44 and PpCys45 are important virulence factors of P. parasitica and trigger NPK1-dependent cell death in various Nicotiana spp.  相似文献   
120.
Secreted small cysteine-rich proteins (SCPs) play a critical role in modulating host immunity in plant–pathogen interactions. Bioinformatic analyses showed that the fungal pathogen Verticillium dahliae encodes more than 100 VdSCPs, but their roles in host–pathogen interactions have not been fully characterized. Transient expression of 123 VdSCP-encoding genes in Nicotiana benthamiana identified three candidate genes involved in host–pathogen interactions. The expression of these three proteins, VdSCP27, VdSCP113, and VdSCP126, in N. benthamiana resulted in cell death accompanied by a reactive oxygen species burst, callose deposition, and induction of defence genes. The three VdSCPs mainly localized to the periphery of the cell. BAK1 and SOBIR1 (associated with receptor-like protein) were required for the immunity triggered by these three VdSCPs in N. benthamiana. Site-directed mutagenesis showed that cysteine residues that form disulphide bonds are essential for the functioning of VdSCP126, but not VdSCP27 and VdSCP113. VdSCP27, VdSCP113, and VdSCP126 individually are not essential for V. dahliae infection of N. benthamiana and Gossypium hirsutum, although there was a significant reduction of virulence on N. benthamiana and G. hirsutum when inoculated with the VdSCP27/VdSCP126 double deletion strain. These results illustrate that the SCPs play a critical role in the V. dahliae–plant interaction via an intrinsic virulence function and suppress immunity following infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号