首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1529篇
  免费   27篇
  国内免费   125篇
  2023年   9篇
  2022年   11篇
  2021年   18篇
  2020年   24篇
  2019年   38篇
  2018年   39篇
  2017年   31篇
  2016年   29篇
  2015年   45篇
  2014年   92篇
  2013年   130篇
  2012年   85篇
  2011年   197篇
  2010年   129篇
  2009年   85篇
  2008年   86篇
  2007年   83篇
  2006年   71篇
  2005年   71篇
  2004年   59篇
  2003年   45篇
  2002年   34篇
  2001年   19篇
  2000年   16篇
  1999年   19篇
  1998年   23篇
  1997年   18篇
  1996年   19篇
  1995年   15篇
  1994年   14篇
  1993年   16篇
  1992年   10篇
  1991年   7篇
  1990年   10篇
  1989年   3篇
  1988年   3篇
  1987年   11篇
  1986年   4篇
  1985年   8篇
  1984年   10篇
  1983年   6篇
  1982年   3篇
  1980年   3篇
  1979年   9篇
  1978年   2篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   6篇
  1973年   4篇
排序方式: 共有1681条查询结果,搜索用时 15 毫秒
91.
92.
An individual-based model (IbM) for bacterial adaptation and evolution, COSMIC-Rules, has been employed to simulate interactions of virtual temperate bacteriophages (phages) and their bacterial hosts. Outcomes of infection mimic those of a phage such as lambda, which can enter either the lytic or lysogenic cycle, depending on the nutritional status of the host. Infection of different hosts possessing differing restriction and modification systems is also simulated. Phages restricted upon infection of one restricting host can be adapted (by host-controlled modification of the phage genome) and subsequently propagate with full efficiency on this host. However, such ability is lost if the progeny phages are passaged through a new host with a different restriction and modification system before attempted re-infection of the original restrictive host. The simulations show that adaptation and re-adaptation to a particular host-controlled restriction and modification system result in lower efficiency and delayed lysis of bacterial cells compared with infection of non-restricting host bacteria.  相似文献   
93.
We developed a straightforward antibody-based assay for rapid homogeneous detection of bacteria. Our sensors utilize antibody recognizing cell-surface epitopes of the target cell. Two samples of the antibody are prepared, each labeled via nanometer size flexible linkers with short complementary oligonucleotides that are modified with fluorochromes that could participate in fluorescence resonance energy transfer (FRET). The length of the complementary oligonucleotide sequences was designed such that very little annealing occurred in the absence of the target cells. In the presence of the target cells the two labeled antibodies bind to the surface of the cell resulting in a large local concentration of the complementary oligonucleotides that are attached to the antibody. This in turn drives the annealing of the complementary oligonucleotides which brings the fluorescence probes to close proximity producing large FRET signals proportional to the amount of target cells. Long flexible linkers used to attach the oligonucleotides to the antibody enable target-induced oligonucleotide annealing even if the density of surface antigens is only modest. We used Escherichia coli 0157:H7 and Salmonella typhimurium to demonstrate that this design produced sensors exhibiting rapid response time, high specificity, and sensitivity in detecting the target bacteria.  相似文献   
94.
This article recapitulates the scientific advancement towards the greener synthesis of silver nanoparticles. Applications of noble metals have increased throughout human civilization, and the uses for nano-sized particles are even more remarkable. “Green” nanoparticle synthesis has been achieved using environmentally acceptable solvent systems and eco-friendly reducing and capping agents. Numerous microorganisms and plant extracts have been applied to synthesize inorganic nanostructures either intracellularly or extracellularly. The use of nanoparticles derived from noble metals has spread to many areas including jewelery, medical fields, electronics, water treatment and sport utilities, thus improving the longevity and comfort in human life. The application of nanoparticles as delivery vehicles for bactericidal agents represents a new paradigm in the design of antibacterial therapeutics. Orientation, size and physical properties of nanoparticles influences the performance and reproducibility of a potential device, thus making the synthesis and assembly of shape- and size-controlled nanocrystals an essential component for any practical application. This need has motivated researchers to explore different synthesis protocols.  相似文献   
95.
Microbial metabolomics: past,present and future methodologies   总被引:1,自引:0,他引:1  
Microbial metabolomics has received much attention in recent years mainly because it supports and complements a wide range of microbial research areas from new drug discovery efforts to metabolic engineering. Broadly, the term metabolomics refers to the comprehensive (qualitative and quantitative) analysis of the complete set of all low molecular weight metabolites present in and around growing cells at a given time during their growth or production cycle. This review focuses on the past, current and future development of various experimental protocols in the rapid developing area of metabolomics in the ongoing quest to reliably quantify microbial metabolites formed under defined physiological conditions. These developments range from rapid sample collection, instant quenching of microbial metabolic activity, extraction of the relevant intracellular metabolites as well as quantification of these metabolites using enzyme based and or modern high tech hyphenated analytical protocols, mainly chromatographic techniques coupled to mass spectrometry (LC-MSn, GC-MSn, CE-MSn), where n indicates the number of tandem mass spectrometry, and nuclear magnetic resonance spectroscopy (NMR).  相似文献   
96.
Single-species microbial biofilm screening for industrial applications   总被引:2,自引:0,他引:2  
While natural microbial biofilms often consist of multiple species, single-species biofilms are of great interest to biotechnology. The current study evaluates biofilm formation for common industrial and laboratory microorganisms. A total of 68 species of biosafety level one bacteria and yeasts from over 40 different genera and five phyla were screened by growing them in microtiter plates and estimating attached biomass by crystal violet staining. Most organisms showed biofilm formation on surfaces of polystyrene within 24 h. By changing a few simple conditions such as substratum characteristics, inoculum and nutrient availability, 66 strains (97%) demonstrated biofilm formation under at least one of the experimental conditions and over half of these strains were classified as strong biofilm formers, potentially suitable as catalysts in biofilm applications. Many non-motile bacteria were also strong biofilm formers. Biofilm morphologies were visualized for selected strains. A model organism, Zymomonas mobilis, easily established itself as a biofilm on various reactor packing materials, including stainless steel.  相似文献   
97.
Microbial metabolomics has been seriously limited by our inability to perform a reliable separation of intra- and extracellular metabolites with efficient quenching of cell metabolism. Microbial cells are sensitive to most (if not all) quenching agents developed to date, resulting in leakage of intracellular metabolites to the extracellular medium during quenching. Therefore, as yet we are unable to obtain an accurate concentration of intracellular metabolites from microbial cell cultures. However, knowledge of the in vivo concentrations of intermediary metabolites is of fundamental importance for the characterization of microbial metabolism so as to integrate meaningful metabolomics data with other levels of functional genomics analysis. In this article, we report a novel and robust quenching method for microbial cell cultures based on cold glycerol-saline solution as the quenching agent that prevents significant leakage of intracellular metabolites and, therefore, permits more accurate measurement of intracellular metabolite concentrations in microbial cells.  相似文献   
98.
The phylogenetic species richness of the bacteria in the gut of the termite Reticulitermes flavipes was examined using near full-length 16S rRNA gene sequencing and amplified rDNA restriction analysis (ARDRA). We amplified the genes by polymerase chain reaction (PCR) directly from a mixed population of termite gut bacteria and isolated them using cloning techniques. Sequence analysis of 42 clones identified a broad taxonomic range of ribotypes from six phyla within the domain Bacteria: Proteobacteria, Spirochaetes, Bacteroidetes, Firmicutes, Actinobacteria, and the recently proposed “Endomicrobia.” Analysis of the sequence data suggested the presence of a termite specific bacterial lineage within Bacteroidetes. The ARDRA data included 261 different ARDRA profiles of 512 clones analyzed. These data suggest the gut flora in R. flavipes is extremely diverse.  相似文献   
99.
The bacterial pathogen Staphylococcus aureus is responsible for a significant amount of human morbidity and mortality, and the ability of S. aureus to cause disease is absolutely dependent on the acquisition of iron from the host. The most abundant iron source to invading staphylococci is in the form of the porphyrin heme. S. aureus is capable of acquiring nutrient iron from heme and hemoproteins via two heme-acquisition systems, the iron-regulated surface determinant system (Isd) and the heme transport system (Hts). Heme acquisition through these systems is involved in staphylococcal pathogenesis suggesting that the intracellular fate of heme plays a significant role in the infectious process. The valuable heme molecule presents a paradox to invading bacteria because although heme is an abundant source of nutrient iron, the extreme reactivity of heme makes it toxic at high concentrations. Therefore, bacteria must regulate the levels of intracellular heme to avoid toxicity. Although the molecular mechanisms responsible for staphylococcal heme acquisition are beginning to emerge, the mechanisms by which S. aureus regulate intracellular heme homeostasis are largely unknown. In this review we describe three potential fates of host-derived heme acquired by S. aureus during infection: (i) degradation for use as a nutrient iron source, (ii) incorporation into bacterial heme-binding proteins for use as an enzyme cofactor, or (iii) efflux through a dedicated ABC-type transport system. We hypothesize that the ultimate fate of exogenously acquired heme in S. aureus is dependent upon the intracellular and extracellular availability of both iron and heme.  相似文献   
100.
Summary The use of trap crops such as cowpea could reduce the effects of the root parasitic weed, Striga hermonthica and its subsequent constraints on the growth of cereals. Certain bacteria could augment the trap crop stimulatory effect. We studied the effect of three bacteria introduced to the rhizosphere of three cowpea varieties at planting. Number of days to cowpea flowering was noted and at harvest, data were collected on pod characteristics and biomass. Means of data subjected to ANOVA were compared using Tukey’s Studentized Range Test. We analysed bacterial headspace volatiles for ethylene by gas chromatography and gas chromatography–mass spectrometry. Bacterial type significantly influenced the cowpea varieties with better performance over the non-inoculated control. Average pod weight (g) with bacterial treatment was 37.97 for Enterobacter sakazakii 8MR5, 34.38 for Pseudomonas 44MS8 and 27.46 for Pseudomonas 10M3. Non-inoculated control had an average weight of 20.98 g. Bacteria promoted a significant increase in pod weight (≥30.89%), fresh biomass (≥24.22%), and improved pod number (≥20.54%) and pod wall thickness (≥7.33%) with no deleterious effect on plant health. Ethylene released by the bacteria ranged from trace concentrations in Pseudomonas sp. to 210 nmoles/108 c. f. u./ml in Ent. sakazakii 8MR5.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号