首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   7篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   7篇
  2014年   9篇
  2013年   4篇
  2012年   5篇
  2011年   9篇
  2010年   9篇
  2009年   9篇
  2008年   7篇
  2007年   9篇
  2006年   8篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  1999年   1篇
排序方式: 共有101条查询结果,搜索用时 875 毫秒
91.
Quantification of tumour‐specific molecular markers at the RNA and DNA level for treatment response monitoring is crucial for risk‐adapted stratification and guidance of individualized therapy in leukaemia and other malignancies. Most pediatric leukaemias and solid tumours of mesenchymal origin are characterized by a relatively low mutation burden at the single nucleotide level and the presence of recurrent chromosomal translocations. The genomic fusion sites resulting from translocations are stable molecular tumour markers; however, repeat‐rich DNA sequences flanking intronic breakpoints limit the design of high sensitivity PCR assays for minimal residual disease (MRD) monitoring. Here, we quantitatively evaluated the impact of repeat elements on assay selection and the feasibility of using extended amplicons (≤1330 bp) amplified by droplet digital PCR to monitor pediatric chronic myeloid leukaemia (CML). Molecular characterization of 178 genomic BCR‐ABL1 fusion sites showed that 64% were located within sequence repeat elements, impeding optimal primer/probe design. Comparative quantification of DNA and RNA BCR‐ABL1 copy numbers in 687 specimens from 55 pediatric patients revealed that their levels were highly correlated. The combination of droplet digital PCR, double quenched probes and extended amplicons represents a valuable tool for sensitive MRD assessment in CML and may be adapted to other translocation‐positive tumours.  相似文献   
92.
CD19 is a B cell-specific receptor that regulates the threshold of B cell receptor (BCR)-mediated cell proliferation. A CD47xCD19 bispecific antibody (biAb) was generated to target and deplete B cells via multiple antibody-mediated mechanisms. Interestingly, the biAb, constructed of a CD19 binding arm and a CD47 binding arm, inhibited BCR-mediated B-cell proliferation with an effect even more potent than a CD19 monoclonal antibody (mAb). The inhibitory effect of the biAb was not attributable to CD47 binding because a monovalent or bivalent anti-CD47 mAb had no effect on B cell proliferation. Fluorescence resonance energy transfer analysis demonstrated that co-engaging CD19 and CD47 prevented CD19 clustering and its migration to BCR clusters, while only engaging CD19 (with a mAb) showed no impact on either CD19 clustering or migration. The lack of association between CD19 and the BCR resulted in decreased phosphorylation of CD19 upon BCR activation. Furthermore, the biAb differentially modulated BCR-induced gene expression compared to a CD19 mAb. Taken together, this unexpected role of CD47xCD19 co-ligation in inhibiting B cell proliferation illuminates a novel approach in which two B cell surface molecules can be tethered, to one another in order, which may provide a therapeutic benefit in settings of autoimmunity and B cell malignancies.  相似文献   
93.
CD22/Siglec-2 is a B cell membrane-bound lectin that recognizes glycan ligands containing alpha2,6-linked sialic acid, and negatively regulates signaling through the B cell antigen receptor (BCR). Previous studies demonstrated that synthetic sialosides that bind to CD22 augment BCR signaling by inhibiting CD22-mediated BCR regulation. Here we demonstrate that, after antigen stimulation, CD22 forms a cap together with BCR, and translocates to lipid rafts. Both co-capping of CD22 with BCR and translocation of CD22 to lipid rafts were markedly blocked by a synthetic alpha2,6-linked sialic acid, Neu5Gcalpha2-6GalbetaSE. These results strongly suggest that synthetic glycan ligand excludes CD22 from BCR-containing lipid rafts. Because CD22-mediated signal regulation requires phosphorylation of CD22 by Lyn that localizes in lipid rafts and is activated by BCR, synthetic glycan ligand regulates localization of CD22 crucial for signal regulation.  相似文献   
94.
95.
The discovery of BCR/ABL as a driver oncogene in chronic myeloid leukemia (CML) resulted in the development of Imatinib, which, in fact, demonstrated the potential of targeting the kinase in cancers by effectively treating the CML patients. This observation revolutionized drug development to target the oncogenic kinases implicated in various other malignancies, such as, EGFR, B-RAF, KIT and PDGFRs. However, one major drawback of anti-kinase therapies is the emergence of drug resistance mutations rendering the target to have reduced or lost affinity for the drug. Understanding the mechanisms employed by resistant variants not only helps in developing the next generation inhibitors but also gives impetus to clinical management using personalized medicine. We reported a retroviral vector based screening strategy to identify the spectrum of resistance conferring mutations in BCR/ABL, which has helped in developing the next generation BCR/ABL inhibitors. Using Ruxolitinib and JAK2 as a drug target pair, here we describe in vitro screening methods that utilizes the mouse BAF3 cells expressing the random mutation library of JAK2 kinase.  相似文献   
96.
《Cell reports》2023,42(7):112780
  1. Download : Download high-res image (150KB)
  2. Download : Download full-size image
  相似文献   
97.
Over half of patients with diffuse large B-cell lymphoma (DLBCL) can be cured by standard R-CHOP treatment (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). However, the remaining patients are refractory and ultimately succumb to progressive or relapsed disease. During the past decade, there has been significant progress in the understanding of molecular mechanisms in DLBCL, largely owing to collaborative efforts in large-scale gene expression profiling and deep sequencing, which have identified genetic alterations critical in lymphomagenesis through activation of key signaling transduction pathways in DLBCL. These discoveries have not only led to the development of targeted therapies, including several currently in clinical trials, but also laid a solid foundation for the future identification of more effective therapies for patients not curable by R-CHOP. This review summarizes the recent advances in our understanding of the molecular characterization and pathogenesis of DLBCL and new treatment directions.  相似文献   
98.
Abstract

The utilization of solid residues allows industry to reduce and recycle waste materials and produce beneficial by-products. The total heavy metal concentrations in slaker grits originating from the chemical recovery process of a pulp mill are lower than the current Finnish statutory limit values for fertilizers used in agriculture and in forestry. In addition, slaker grits are strongly alkaline pH (13.1), have elevated total calcium concentration (331 g kg?1; d.w.), contain calcite (CaCO3), as well as a neutralizing value of 39.4% (Ca equivalents, d.w.). Thus, 0.96 tonnes of slaker grits would be required to replace 1 tonne of a commercial ground limestone product. This indicates that slaker grits have great potential as an industrial residue-based fertilizer and liming agent for use in agriculture and forestry. Since, before such use, it is necessary to assess the mobility of elements in the grits, the three-stage BCR sequential extraction procedure was carried out. Results from sequential extractions showed that the partitioning of Mn (47%), Co (47.1%), Ni (43.1%) and S (94%) was highest in the exchangeable fraction, in which acetic acid (CH3COOH) is used as extractant. The partitioning of Fe (96.5%) and Ti (75.6%) was highest in the easily reduced fraction, in which hydroxylamine hydrochloride (NH2OH–HCI) is used as extractant. The partitioning of Cr (90.8%), V (75.4%), Zn (78.3%), Ba (62.1%), Al (99.4%) and P (99.8%) was highest in the oxidizable fraction, in which hydrogen peroxide (H2O2) is first applied to a heated medium (i.e.85°C) for dissolving organic matter, after which ammonium acetate (NH4COOH) is used as extractant.  相似文献   
99.
The advance of next generation sequencing (NGS) techniques provides an unprecedented opportunity to probe the enormous diversity of the immune repertoire by deep sequencing T-cell receptors (TCRs) and B-cell receptors (BCRs). However, an efficient and accurate analytical tool is still on demand to process the huge amount of data. We have developed a high-resolution analytical pipeline, Immune Monitor (“IMonitor”) to tackle this task. This method utilizes realignment to identify V(D)J genes and alleles after common local alignment. We compare IMonitor with other published tools by simulated and public rearranged sequences, and it demonstrates its superior performance in most aspects. Together with this, a methodology is developed to correct the PCR and sequencing errors and to minimize the PCR bias among various rearranged sequences with different V and J gene families. IMonitor provides general adaptation for sequences from all receptor chains of different species and outputs useful statistics and visualizations. In the final part of this article, we demonstrate its application on minimal residual disease detection in patients with B-cell acute lymphoblastic leukemia. In summary, this package would be of widespread usage for immune repertoire analysis.  相似文献   
100.
《MABS-AUSTIN》2013,5(1):199-211
Epratuzumab has demonstrated therapeutic activity in patients with non-Hodgkin lymphoma, acute lymphoblastic leukemia, systemic lupus erythematosus, and Sjögren's syndrome, but its mechanism of affecting normal and malignant B cells remains incompletely understood. We reported previously that epratuzumab displayed in vitro cytotoxicity to CD22-expressing Burkitt lymphoma cell lines (Daudi and Ramos) only when immobilized on plates or combined with a crosslinking antibody plus a suboptimal amount of anti-IgM (1 μg/mL). Herein, we show that, in the absence of additional anti-IgM ligation, extensive crosslinking of CD22 by plate-immobilized epratuzumab induced intracellular changes in Daudi cells similar to ligating B-cell antigen receptor with a sufficiently high amount of anti-IgM (10 μg/mL). Specifically, either treatment led to phosphorylation of CD22, CD79a and CD79b, along with their translocation to lipid rafts, both of which were essential for effecting caspase-dependent apoptosis. Moreover, such immobilization induced stabilization of F-actin, phosphorylation of Lyn, ERKs and JNKs, generation of reactive oxygen species (ROS), decrease in mitochondria membrane potential (Δψm), upregulation of pro-apoptotic Bax, and downregulation of anti-apoptotic Bcl-xl and Mcl-1. The physiological relevance of immobilized epratuzumab was implicated by noting that several of its in vitro effects, including apoptosis, drop in Δψm, and generation of ROS, could be observed with soluble epratuzumab in Daudi cells co-cultivated with human umbilical vein endothelial cells. These results suggest that the in vivo mechanism of non-ligand-blocking epratuzumab may, in part, involve the unmasking of CD22 to facilitate the trans-interaction of B cells with vascular endothelium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号