首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1050篇
  免费   53篇
  国内免费   30篇
  1133篇
  2023年   14篇
  2022年   27篇
  2021年   24篇
  2020年   22篇
  2019年   23篇
  2018年   48篇
  2017年   19篇
  2016年   28篇
  2015年   54篇
  2014年   84篇
  2013年   84篇
  2012年   45篇
  2011年   52篇
  2010年   53篇
  2009年   66篇
  2008年   48篇
  2007年   55篇
  2006年   41篇
  2005年   42篇
  2004年   44篇
  2003年   28篇
  2002年   18篇
  2001年   19篇
  2000年   24篇
  1999年   26篇
  1998年   19篇
  1997年   15篇
  1996年   10篇
  1995年   14篇
  1994年   12篇
  1993年   11篇
  1992年   9篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   6篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   7篇
  1983年   2篇
  1982年   9篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1133条查询结果,搜索用时 15 毫秒
61.
62.
Xiang P  Haas EJ  Zeece MG  Markwell J  Sarath G 《Planta》2004,220(1):56-63
Gly m Bd 28 K is a major soybean (Glycine max Merr.) glycoprotein allergen. It was originally identified as a 28 kDa polypeptide in soybean seed flour. However, the full-length protein is encoded by an open reading frame (ORF) of 473 amino acids, and contains a 23 kDa C-terminal polypeptide of as yet unknown allergenic and structural characteristics. IgE-binding (allergenic potential) of the Gly m Bd 28 K protein including the 23 kDa C-terminal portion as well as shorter fragments derived from the full-length ORF were evaluated using sera from soy-sensitive adults. All of these sera contained IgE that efficiently recognized the C-terminal region. Epitope mapping demonstrated that a dominant linear C-terminal IgE binding epitope resides between residues S256 and A270. Alanine scanning of this dominant epitope indicated that five amino acids, Y260, D261, D262, K264 and D266, contribute most towards IgE-binding. A model based on the structure of the subunit of soybean -conglycinin revealed that Gly m Bd 28 K contains two cupin domains. The dominant epitope is on the edge of the first -sheet of the C-terminal cupin domain and is present on a potentially solvent-accessible loop connecting the two cupin domains. Thus, the C-terminal 23 kDa polypeptide of Gly m Bd 28 K present in soy products is allergenic and apparently contains at least one immunodominant epitope near the edge of a cupin domain. This knowledge could be helpful in the future breeding of hypoallergenic soybeans.Abbreviations Ara h 1 Arachis hypogaea allergen 1 - Ara h 3 Arachis hypogaea allergen 3 - BCA Bicinchoninic acid - Gly m Bd 28 K Glycine max band 28 kDa allergen - Gly m Bd 30 K Glycine max band 30 kDa allergen - Gly m Bd 68 K Glycine max band 68 kDa allergen - IgE Immunoglobulin E  相似文献   
63.
The use of the soil fumigant Telone II, which contains a mixture of cis- and trans-1,3-dichloropropene, to control plant-parasitic nematodes is a common agricultural practice for maximizing yields of various crops. The effectiveness of Telone II is limited by the rapid turnover of the dichloropropenes in the soil due to the presence of bacterial catabolic pathways, which may be of recent origin. The characterization of three enzymes in these pathways, trans-3-chloroacrylic acid dehalogenase (CaaD), cis-3-chloroacrylic acid dehalogenase (cis-CaaD), and malonate semialdehyde decarboxylase (MSAD), has uncovered intriguing catalytic mechanisms as well as a fascinating evolutionary lineage for these proteins. Sequence comparisons and mutagenesis studies revealed that all three enzymes belong to the tautomerase superfamily. Tautomerase superfamily members with known structures are characterized by a β-α-β structural fold. Moreover, they have a conserved N-terminal proline, which plays an important catalytic role. Mechanistic, NMR, and pH rate studies of the two dehalogenases, coupled with a crystal structure of CaaD inactivated by 3-bromopropiolate, indicate that they use a general acid/base mechanism to catalyze the conversion of their respective isomer of 3-chloroacrylate to malonate semialdehyde. The reaction is initiated by the conjugate addition of water to the C-2, C-3 double bond and is followed by the loss of HCl. MSAD processes malonate semialdehyde to acetaldehyde, and is the first identified decarboxylase in the tautomerase superfamily. The catalytic mechanism is not well defined but the N-terminal proline plays a prominent role and may function as a general acid catalyst, similar to its role in CaaD and cis-CaaD. These are the first structural and mechanistic details for tautomerase superfamily members that catalyze either a hydration or a decarboxylation reaction, rather than a tautomerization reaction, in which Pro-1 serves as a general acid catalyst rather than as a general base catalyst. The available information on the 1,3-dichloropropene catabolic enzymes allows speculation on the possible evolutionary origins of their activities.  相似文献   
64.
65.
Electrostatic interactions play important roles in diverse biological phenomena controlling the function of many proteins. Polar molecules can be studied with the FDPB method solving the Poisson-Boltzmann equation on a finite difference grid. A method for the prediction of pK(a)s and redox potentials in the thioredoxin superfamily is introduced. The results are compared with experimental pK(a) data where available, and predictions are made for members lacking such data. Studying CxxC motif variation in the context of different background structures permits analysis of contributions to cysteine DeltapK(a)s. The motif itself and the overall framework regulate pK(a) variation. The reported method includes generation of multiple side-chain rotamers for the CxxC motif and is an effective predictive tool for functional pK(a) variation across the superfamily. Redox potential follows the trend in cysteine pK(a) variation, but some residual discrepancy indicates that a pH-independent factor plays a role in determining redox potentials for at least some members of the superfamily. A possible molecular basis for this feature is discussed.  相似文献   
66.
Tumor necrosis factor (TNF) family ligands bind to death domain-containing TNF receptors (death receptors), which can subsequently activate intracellular signaling pathways to initiate caspase activity and apoptotic cell death. Decoy receptors, without intracellular death domains, have been reported to prevent cytotoxic effects by binding to and sequestering such ligands, or by interfering with death receptor trimerization. The chicken death receptors, Fas, TNFR1, DR6, and TVB, are constitutively expressed in a relatively wide variety of hen tissues. In this study, two chicken receptors with sequence homology to the mammalian decoys, DcR3 and osteoprotegerin, were identified and their pattern of expression was characterized. Unlike the previously identified chicken death receptors, the newly characterized decoy receptors show comparatively limited expression among tissues, suggesting a tissue-specific function. Finally, characterization of these chicken receptors further contributes to understanding the evolutionary divergence of TNFR superfamily members among vertebrate species.  相似文献   
67.
68.
Prostate derived factor (PDF) is a member of transforming growth factor-beta (TGF-beta) superfamily proteins involved in differentiation of the prostate epithelium. Proprotein convertases (PCs) such as furin are thought to mediate the processing of TGF-beta superfamily. In the present study, we demonstrated for the first time that human prostate cancer cell lines differentially synthesize and secret prostate derived factor (PDF), and that PDF secreted by LNCaP is processed by PCs. Exposure of LNCaP cells to the decanoyl-Arg-Val-Lys-Arg-chloromethylketone (CMK), a synthetic furin-like protease inhibitor, inhibited PDF processing and resulted in the loss of luminal cell phenotype and induction of basal cell phenotype in LNCaP cells as demonstrated by alternations in the expression of cytokeratins 8, 14, 18, and 19, markers of prostate epithelial cell differentiation. These results suggest that proprotein convertases may be involved in the regulation of prostate epithelial cell differentiation, and may be an important target of prostate cancer therapy.  相似文献   
69.
Chronic hypothyroidism is frequently associated with atherosclerosis due to increased cholesterol plasma levels; nevertheless, the contribution of impaired reverse cholesterol transport (RCT) in this process has not been completely elucidated. The aim of this study was to evaluate the effect of thyroidectomy (Htx) upon the main stages of RCT in rats. Plasma lipid alterations induced by thyroidectomy showed a slight, but significant, reduction of total plasma triglycerides, a 300% increase of LDL-cholesterol and a 25% decrease in HDL-cholesterol compared to control rats. We evaluated the first stage of RCT determining 3H-cholesterol efflux in Fu5AH cells. The capacity of HDL obtained from Htx rats to promote cholesterol efflux was similar to that of controls. Lecithin:cholesterol acyltransferase (LCAT) activity, the second stage and the driving force of RCT was 30% lower in Htx animals compared to controls, as determined by reconstituted HDL used as an external substrate. Lipoproteins are remodeled by hepatic lipase; the mean activity of this enzyme in postheparin plasma of Htx animals was reduced by 30% compared to controls, thus suggesting an impaired HDL remodeling by this enzyme in the hypothyroid status. In contrast, lipoprotein lipase activity in the Htx group was unchanged. In summary, this study demonstrates that chronic hypothyroidism in the rat induced an impaired RCT mainly at the cholesterol esterification, and HDL remodeling mediated by hepatic lipase. The latter probably results in an abnormal HDL structure, i.e. phospholipid enrichment, which contributes to decrease HDL-apo AI fractional catabolic rates.  相似文献   
70.
While in fungi iron transport via hydroxamate siderophores has been amply proven, iron transport via enterobactin is largely unknown. Enterobactin is a catecholate-type siderophore produced by several enterobacterial genera grown in severe iron deprivation. By using the KanMX disruption module in vector pUG6 in a fet3 background of Saccharomyces cerevisiae we were able to disrupt the gene YOL158c Sce of the major facilitator super family (MFS) which has been previously described as a gene encoding a membrane transporter of unknown function. Contrary to the parental strain, the disruptant was unable to utilize ferric enterobactin in growth promotion tests and in transport assays using 55Fe-enterobactin. All other siderophore transport properties remained unaffected. The results are evidence that in S. cerevisiae the YOL158c Sce gene of the major facilitator super family, now designated ENB1, encodes a transporter protein (Enb1p), which specifically recognizes and transports enterobactin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号