首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55854篇
  免费   3134篇
  国内免费   2427篇
  2023年   751篇
  2022年   1138篇
  2021年   1541篇
  2020年   1578篇
  2019年   2217篇
  2018年   1915篇
  2017年   1298篇
  2016年   1297篇
  2015年   1595篇
  2014年   3021篇
  2013年   4081篇
  2012年   2380篇
  2011年   3272篇
  2010年   2432篇
  2009年   2696篇
  2008年   2770篇
  2007年   2790篇
  2006年   2447篇
  2005年   2195篇
  2004年   1931篇
  2003年   1733篇
  2002年   1498篇
  2001年   941篇
  2000年   901篇
  1999年   855篇
  1998年   812篇
  1997年   693篇
  1996年   645篇
  1995年   570篇
  1994年   583篇
  1993年   510篇
  1992年   511篇
  1991年   467篇
  1990年   366篇
  1989年   356篇
  1988年   287篇
  1987年   287篇
  1986年   280篇
  1985年   518篇
  1984年   798篇
  1983年   635篇
  1982年   647篇
  1981年   550篇
  1980年   464篇
  1979年   382篇
  1978年   340篇
  1977年   310篇
  1976年   289篇
  1975年   226篇
  1973年   213篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
101.
Docetaxel resistance remains one of the main problems in clinical treatment of metastatic prostate cancer (PCa). Previous studies identified differently expressed lncRNAs in docetaxel-resistant PCa cell lines, while the potential mechanisms were still unknown. In the present study, we found NEAT1 was expressed at high levels in docetaxel-resistant PCa clinical samples and related cell lines. When knockdown NEAT1, cell proliferation and invasion in docetaxel-resistant PCa cells in vitro and in vivo were downregulated. Our further researches explained that NEAT1 exerts oncogenic function in PCa by competitively ‘sponging’ both miR-34a-5p and miR-204-5p. Inhibition of miR-34a-5p or miR-204-5p expression mimics the docetaxel-resistant activity of NEAT1, whereas ectopic expression of miR-34a-5p or miR-204-5p attenuates the anti-drug function of NEAT1 in PCa cells. Besides, we also found ACSL4 is a target of both miR-34a-5p and miR-204-5p, and ACSL4 was also inhibited by miR-34a-5p and miR-204-5p. Moreover, suppression of miR-34a-5p or/and miR-204-5p greatly restrained the expression of ACSL4 upon NEAT1 overexpression. Joint expression of miR-34a-5p and miR-204a-5p synergistically decreased the expression of ASCL4, indicating miR-34a-5p and miR-204a-5p collaboratively inhibit the expression of ACSL4. Innovatively, we concluded that NEAT1 contributes to the docetaxel resistance by increasing ACSL4 via sponging miR-34a-5p and miR-204-5p in PCa cells.  相似文献   
102.
103.
In the present study we have evaluated the antigenotoxic effects of Farnesol (FL) a 15-carbon isoprenoid alcohol against benzo (a) pyrene [B(a)P] (125 mg kg? 1.b.wt oral) induced toxicity. B(a)P administration lead to significant induction in Cytochrome P450 (CYP) content and aryl hydrocarbon hydrolase (AHH) activity (p < 0.001), DNA strand breaks and DNA adducts (p < 0.001) formation. FL was shown to suppress the activities of both CYP and AHH (p < 0.005) in modulator groups. FL pretreatment significantly (p < 0.001) restored depleted levels of reduced glutathione (GSH), quinone reductase (QR) and glutathione –S-transferase (GST). A simultaneous significant and at both the doses reduction was seen in DNA strand breaks and in in-vivo DNA adducts formation (p < 0.005), which gives some insight on restoration of DNA integrity. The results support the protective nature of FL. Hence present data supports FL as a future drug to preclude B (a) P induced toxicity.  相似文献   
104.
《Process Biochemistry》2014,49(5):882-889
The VP4 protein of infectious bursal disease virus (IBDV) is a serine protease that processes the polyprotein for viral assembly. VP4 has been found to associate primarily with type II IBDV tubules that are 24 nm in diameter. In this study, a chimeric VP4, assigned as HS1VP4, was constructed with a VP4-autocleavage site inserted between the N-terminal His-tag and the VP4 sequence. The results showed that the VP4 forms tubules after the self-cleavage of HS1VP4 when expressed in Escherichia coli. Furthermore, a deletion of 28 amino acids at the C-terminus of VP4 resulted in monomers and dimers instead of tubule formation; mutants of S652A and K692A at active site destroyed the activity. The endopeptidase activity of these monomers and dimers was approximately 12.5 times higher than that of VP4 tubules. Additionally, the formation of tubules inhibited VP4 protease activity, as demonstrated through in vitro assays. The production and characterization of monomers or dimers that have greater endopeptidase activity and protease activity than tubules can provide further insight into VP4 tubule assembly and the regulation of VP4 activity in host cells; this insight will facilitate the development of new anti-IBDV strategies.  相似文献   
105.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   
106.
The National Cancer Institute (NCI) Diversity Set was screened for potential inhibitors of phospho-MurNAc-pentapeptide translocase MraY from Escherichia coli using a primary fluorescence enhancement assay, followed by a secondary radiochemical assay. One new MraY inhibitor was identified from this screen, a naphthylisoquinoline alkaloid michellamine B, which inhibited E. coli MraY (IC50 456 μM) and Bacillus subtilis MraY (IC50 386 μM), and which showed antimicrobial activity against B. subtilis (MIC 16 μg/mL). Following an earlier report of halogenated fluoresceins identified from a combined MraY/MurG screen, three halogenated fluoresceins were tested as inhibitors of E. coli MraY and E. coli MurG, and phloxine B was identified as an inhibitor of E. coli MraY (IC50 32 μM). Molecular docking of inhibitor structures against the structure of Aquifex aeolicus MraY indicates that phloxine B appears to bind to the Mg2+ cofactor in the enzyme active site, while michellamine B binds to a hydrophobic groove formed between transmembrane helices 5 and 9.  相似文献   
107.
The purpose of this study was a dosimetric validation of the Vero4DRT for brain stereotactic radiotherapy (SRT) with extremely small fields calculated by the treatment planning system (TPS) iPlan (Ver.4.5.1; algorithm XVMC). Measured and calculated data (e.g. percentage depth dose [PDD], dose profile, and point dose) were compared for small square fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm2 using ionization chambers of 0.01 or 0.04 cm3 and a diamond detector. Dose verifications were performed using an ionization chamber and radiochromic film (EBT3; the equivalent field sizes used were 8.2, 8.7, 8.9, 9.5, and 12.9 mm2) for five brain SRT cases irradiated with dynamic conformal arcs.The PDDs and dose profiles for the measured and calculated data were in good agreement for fields larger than or equal to 10 × 10 mm2 when an appropriate detector was chosen. The dose differences for point doses in fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm2 were +0.48%, +0.56%, −0.52%, and +11.2% respectively. In the dose verifications for the brain SRT plans, the mean dose difference between the calculated and measured doses were −0.35% (range, −0.94% to +0.47%), with the average pass rates for the gamma index under the 3%/2 mm criterion being 96.71%, 93.37%, and 97.58% for coronal, sagittal, and axial planes respectively.The Vero4DRT system provides accurate delivery of radiation dose for small fields larger than or equal to 10 × 10 mm2.  相似文献   
108.
Gold catalysis is a convenient tool to oxidatively functionalize alkyne into a range of valuable compounds. In this article, we report a new access to isochroman-4-one and 2H-pyran-3(6H)-one derivatives that involves a gold-catalyzed oxidative cycloalkoxylation of an alkyne in the presence of a pyridine N-oxide. The reaction proceeds under mild conditions, is relatively efficient and exhibits a high functional group compatibility.  相似文献   
109.
Han Zhang 《Autophagy》2017,13(3):627-628
Macroautophagy/autophagy is a well-established process involved in maintaining cellular homeostasis, but its role in cancer is complex and even controversial. Many studies have reported a correlative relationship between increased autophagy and evolving cancer cells under stress conditions such as nutrient or oxygen deprivation; however, there has been a lack of a plausible mechanistic link to properly target the autophagy process in the context of this microenvironment. We recently unveiled a positive regulatory loop involving TGM2 (transglutaminase 2)-NFKB/NF-κB signaling, IL6 and autophagy in cancer using mantle cell lymphoma (MCL) as a model system. These pathways are functionally connected to each other, thereby promoting malignant B cell survival and leading to enhanced lymphoma progression both in mice and in patients. Disruption of this network could provide an opportunity to increase the efficacies of current therapies and to reduce MCL drug resistance.  相似文献   
110.
Abstract

Recent structures of the potassium channel provide an essential beginning point for explaining how the pore is gated between open and closed conformations by changes in membrane voltage. Yet, the molecular details of this process and the connections to transmembrane gradients are not understood. To begin addressing how changes within a membrane environment lead to the channel’s ability to sense shifts in membrane voltage and to gate, we performed double-bilayer simulations of the Kv1.2 channel. These double-bilayer simulations enable us to simulate realistic voltage drops from resting potential conditions to depolarized conditions by changes in the bath conditions on each side of the bilayer. Our results show how the voltage sensor domain movement responds to differences in transmembrane potential. The initial voltage sensor domain movement, S4 in particular, is modulated by the gating charge response to changes in voltage and is initially stabilized by the lipid headgroups. We show this response is directly coupled to the initial stages of pore domain motion. Results presented here provide a molecular model for how the pre-gating process occurs in sequential steps: Gating charge response, movement and stabilization of the S4 voltage sensor domain, and movement near the base of the S5 region to close the pore domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号