排序方式: 共有21条查询结果,搜索用时 0 毫秒
11.
Pablo Servigne Jerome Orivel Frederic Azemar James Carpenter Alain Dejean Bruno Corbara 《Insect Science》2020,27(1):122-132
Although the Neotropical territorially dominant arboreal ant Azteca chartifex Forel is very aggressive towards any intruder,its populous colonies tolerate the close presence of the fierce polistine wasp Polybia rejecta(F.).In French Guiana,83.33%of the 48 P.rejecta nests recorded were found side by side with those of A.chartifex.This nesting association results in mutual protection from predators(i.e.,the wasps protected from army ants;the ants protected from birds).We conducted field studies,laboratorybased behavioral experiments and chemical analyses to elucidate the mechanisms allowing the persistence of this association.Due to differences in the cuticular profiles of the two species,we eliminated the possibility of chemical mimicry.Also,analyses of the carton nests did not reveal traces of marking on the envelopes.Because ant forager flows were not perturbed by extracts from the wasps’Dufour’s and venom glands,we rejected any hypothetical action of repulsive chemicals.Nevertheless,we noted that the wasps"scraped"the surface of the upper part of their nest envelope using their mandibles,likely removing the ants'scent trails,and an experiment showed that ant foragers were perturbed by the removal of their scent trails.This leads us to use the term"erasure hypothesis."Thus,this nesting association persists thanks to a relative tolerance by the ants towards wasp presence and the behavior of the wasps that allows them to"contain"their associated ants through the elimination of their scent trails,direct attacks,"wing-buzzing"behavior and ejecting the ants. 相似文献
12.
Nutrient transfer supports a beneficial relationship between the canopy ant,Azteca trigona,and its host tree 下载免费PDF全文
1. Energy fluxes between ants and plants have been a focal point for documenting mutualistic behaviour. Plants can provide resources to ants through the production of extrafloral nectaries. In exchange, ants can fertilise plants through their nutrient‐ and microbe‐rich refuse. 2. Here, we test a potential facultative mutualism between the carton‐nesting canopy ant, Azteca trigona, and their host trees. Through observational and experimental approaches, this study documents how nutrient transfer provides a basis for this beneficial ant–plant relationship. 3. In a greenhouse experiment, fertilisation with sterilised refuse (i.e. nutrients only) increased seedling growth three‐fold, while the refuse with its natural microbial community increased growth 11‐fold. 4. Total root density was doubled in refuse piles compared with the surrounding area in situ. On average, refuse provides host trees and the surrounding plant community with access to a > 800% increase in N, P and K relative to leaf litter. 5. Azteca trigona preferentially nests in trees with extrafloral nectaries and on large, longer‐lived tree species. 6. Given the nutrient‐poor nature of the Neotropics, host trees probably experience significant benefits from refuse fertilisation. Conversely, A. trigona benefit from long‐term stable structural support for nests and access to nutrient‐rich extrafloral nectaries. Without clear costs to either A. trigona or host trees, it is proposed that these positive interactions are preliminary evidence of a facultative mutualism. 相似文献
13.
Estelí Jimenez‐Soto Jonathan R. Morris Deborah K. Letourneau Stacy M. Philpott 《Biotropica》2019,51(1):50-61
In natural and managed systems, connections between trees are important structural resources for arboreal ant communities with ecosystem‐level effects. However, ongoing agricultural intensification in agroforestry systems, which reduces shade trees and connectivity between trees and crop plants, may hinder ant recruitment rates to resources and pest control services provided by ants. We examined whether increasing connectivity between coffee plants and shade trees in coffee plantations increases ant activity and enhances biological control of the coffee berry borer, the most devastating insect pest of coffee. Further, we examined whether artificial connections buffer against the loss of vegetation connectivity in coffee plants located at larger distances from the nesting tree. We used string to connect Inga micheliana shade trees containing Azteca sericeasur ant nests to coffee plants to compare ant activity before and after placement of the strings, and measured borer removal by ants on coffee plants with and without strings. Ant activity significantly increased after the addition of strings on connected plants, but not on control plants. Borer removal by ants was also three times higher on connected plants after string placement. Greater distance from the nesting tree negatively influenced ant activity on control coffee plants, but not on connected plants, suggesting that connections between coffee plants and nest trees could potentially compensate for the negative effects that larger distances pose on ant activity. Our study shows that favoring connectivity at the local scale, by artificially adding connections, promotes ant activity and may increase pest removal in agroecosystems. Abstract in Spanish is available with online material. 相似文献
14.
Veronika E. Mayer Hermann Voglmayr 《Proceedings. Biological sciences / The Royal Society》2009,276(1671):3265-3273
Apart from growing fungi for nutrition, as seen in the New World Attini, ants cultivate fungi for reinforcement of the walls of their nests or tunnel-shaped runway galleries. These fungi are grown on organic material such as bark, epiphylls or trichomes, and form stable ‘carton structures’. In this study, the carton of the runway galleries built by Azteca brevis (Formicidae, Dolichoderinae) on branches of Tetrathylacium macrophyllum (Flacourtiaceae) is investigated. For the first time, molecular tools are used to address the biodiversity and phylogenetic affinities of fungi involved in tropical ant carton architecture, a previously neglected ant–fungus mutualism.The A. brevis carton involves a complex association of several fungi. All the isolated fungi were unequivocally placed within the Chaetothyriales by DNA sequence data. Whereas five types of fungal hyphae were morphologically distinguishable, our DNA data showed that more species are involved, applying a phylogenetic species concept based on DNA phylogenies and hyphal morphology. In contrast to the New World Attini with their many-to-one (different ant species—one fungal cultivar) pattern, and temperate Lasius with a one-to-two (one ant species—two mutualists) or many-to-one (different ant species share the same mutualist) system, the A. brevis–fungi association is a one-to-many multi-species network. Vertical fungus transmission has not yet been found, indicating that the A. brevis–fungi interaction is rather generalized. 相似文献
15.
Ants limit bird foraging success via interference or exploitative competition. We compared bird foraging (number and duration of visits, bird species visiting) on ant (Azteca instabilis)‐infested and ant‐free tropical trees (Inga micheliana and Alchornea latifolia). Ants did not affect the number of bird visits or the number of species visiting. Ant presence shortened visit duration (overall and for insectivores) only on A. latifolia where ant activity was higher. Ants may thus hinder bird foraging on some tropical trees potentially shaping how predators affect arthropod communities; yet ant effects depend on bird foraging guild and ant activity. 相似文献
16.
A survey of two Amazonian melastome ant‐plants, Maieta guianensis and Tococa bullifera, revealed a significant difference in plant size according to the species of ant inhabiting the plant. Plants with Crematogaster laevis, on average, were smaller than those with Pheidole minutula (in M. guianensis) and those with Azteca sp. (in T. bullifera). There is no evidence that these patterns were due either to the deterministic replacement of C. laevis by another ant species during host‐plant ontogeny or to a habitat effect on plant growth rates coupled with colony survival. More likely, the smaller size of C. laevis plants can be explained by its effects on host‐plant performance. Plants with C. laevis lost their associated ant colonies more frequently than plants with P. minutula and Azteca sp. Plants that lost their C. laevis either died, or more commonly, were severely defoliated. Defoliated plants, once sprouted, tended to become recolonized, but such recolonizations were not deterministic so as to favor one species over another. Plants with C. laevis showed similar, or only slightly greater, standing levels of herbivory than plants with P. minutula or Azteca sp. This suggests that when C. laevis is present, it confers some degree of protection to its hosts. It was found that early in colony development, queens of C. laevis moved off their host plants to build satellite nests in dead twigs on the ground, a behavior not seen in the other two species and one that possibly renders colonies more vulnerable to mortality from predation, flooding, or nest decay. Comparable 815N values in C. laevis and P. minutula indicate that the two species are equally dependent on food supplied by the host plant. 相似文献
17.
Shaded coffee agroecosystems traditionally have few pest problems potentially due to higher abundance and diversity of predators of herbivores. However, with coffee intensification (e.g., shade tree removal or pruning), some pest problems increase. For example, coffee leaf miner outbreaks have been linked to more intensive management and increased use of agrochemicals. Parasitic wasps control the coffee leaf miner, but few studies have examined the role of predators, such as ants, that are abundant and diverse in coffee plantations. Here, we examine linkages between arboreal ant communities and coffee leaf miner incidence in a coffee plantation in Mexico. We examined relationships between incidence and severity of leaf miner attack and: (1) variation in canopy cover, tree density, tree diversity, and relative abundance of Inga spp. shade trees; (2) presence of Azteca instabilis, an arboreal canopy dominant ant; and (3) the number of arboreal twig‐nesting ant species and nests in coffee plants. Differences in vegetation characteristics in study plots did not correlate with leaf miner damage perhaps because environmental factors act on pest populations at a larger spatial scale. Further, presence of A. instabilis did not influence presence or severity of leaf miner damage. The proportion of leaves with leaf miner damage was significantly lower where abundance of twig‐nesting ants was higher but not where twig‐nesting ant richness was higher. These results indicate that abundance of twig‐nesting ants in shaded coffee plantations may contribute to maintenance of low leaf miner populations and that ants provide important ecosystem services in coffee agroecosystems. 相似文献
18.
Canopy connectivity influences foraging, movement, and competition in arboreal ant communities. Understanding how canopy connectivity affects arboreal ant communities could inform the development of management practices that maximize services from known biocontrol agents. We experimentally manipulated connectivity between the crowns of large shade trees to investigate the effects of canopy connectivity on arboreal ant species richness and composition in a coffee agroecosystem. A linear mixed-effects analysis showed that the number of species observed at baits set in tree crowns increased significantly after the crowns had been connected with nylon ropes. Crowns that were connected increased in similarity of ant species composition, particularly between adjacent connected crowns. Connectivity may increase the number of species present in tree crowns by allowing ants to move and forage in the canopy while bypassing trunks with more aggressive, territorial species such as Azteca sericeasur. Because twig-nesting species in the upper canopy have been shown to act as biocontrol agents of herbivores, an increase in species richness in tree crowns could have positive implications for agricultural pest-control services. 相似文献
19.
Interactions among members of biological communities can create spatial patterns that effectively generate habitat heterogeneity for other members in the community, and this heterogeneity might be crucial for their persistence. For example, stage‐dependent vulnerability of a predatory lady beetle to aggression of the ant, Azteca instabilis, creates two habitat types that are utilized differently by the immature and adult life stages of the beetle. Due to a mutualistic association between A. instabilis and the hemipteran Coccus viridis – which is A. orbigera main prey in the area – only plants around ant nests have high C. viridis populations. Here, we report on a series of surveys at three different scales aimed at detecting how the presence and clustered distribution of ant nests affect the distribution of the different life stages of this predatory lady beetle in a coffee farm in Chiapas, Mexico. Both beetle adults and larvae were more abundant in areas with ant nests, but adults were restricted to the peripheries of highest ant activity and outside the reach of coffee bushes containing the highest densities of lady beetle larvae. The abundance of adult beetles located around trees with ants increased with the size of the ant nest clusters but the relationship is not significant for larvae. Thus, we suggest that A. orbigera undergoes an ontogenetic niche shift, not through shifting prey species, but through stage‐specific vulnerability differences against a competitor that renders areas of abundant prey populations inaccessible for adults but not for larvae. Together with evidence presented elsewhere, this study shows how an important predator is not only dependent on the existence of two qualitatively distinct habitat types, but also on the spatial distribution of these habitats. We suggest that this dependency arises due to the different responses that the predator's life stages have to this emergent spatial pattern. 相似文献
20.