首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   334篇
  免费   12篇
  2023年   5篇
  2022年   4篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   4篇
  2017年   7篇
  2016年   3篇
  2015年   8篇
  2014年   11篇
  2013年   12篇
  2012年   10篇
  2011年   10篇
  2010年   8篇
  2009年   5篇
  2008年   18篇
  2007年   9篇
  2006年   8篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2001年   2篇
  2000年   5篇
  1999年   7篇
  1998年   2篇
  1997年   8篇
  1996年   7篇
  1995年   4篇
  1994年   14篇
  1993年   8篇
  1992年   3篇
  1991年   9篇
  1990年   9篇
  1989年   9篇
  1988年   7篇
  1987年   9篇
  1986年   5篇
  1985年   9篇
  1984年   6篇
  1983年   9篇
  1982年   14篇
  1981年   8篇
  1980年   10篇
  1978年   2篇
  1976年   5篇
  1975年   1篇
  1974年   3篇
  1973年   6篇
  1972年   3篇
  1971年   4篇
排序方式: 共有346条查询结果,搜索用时 312 毫秒
71.
Abstract: The question of whether three acidic, water-soluble proteins (14-3-2, 14-3-3, and S-100, the first and last known to be brain-specific) are axonally transported was investigated in the rabbit visual system. The water-soluble proteins were obtained from individual optic nerves, combined optic tracts and lateral geniculate bodies, superior colliculi, and, in some instances, retinas at various times (1–56 days) after monocular injections of [3H]leucine. These proteins were separated by a two-step polyacrylamide gel electrophore-sis procedure that isolated 14-3-2, 14-3-3, and S-100 almost uncontaminated by other radioactivity. The isolated 14-3-2 and S-100 were demonstrated to be approx. 90% pure by a new method based on retarding the migration of these proteins by immunoadsorption during the first step of electrophoresis. An analysis of the radioactive labeling of the total soluble proteins (TSP) and the isolated acidic proteins revealed that: (1) S-100 was not axonally transported; (2) both 14-3-2 and 14-3-3 were part of one of the slow components of axonal transport (2-4 mm/day); (3) the radioactivity of 14-3-2 and 14-3-3 represented about 2.7% and 3.2%, respectively, of the radioactivity incorporated into the axonally transported TSP; (4) the ultimate distributions of the radioactively labeled 14-3-2 and 14-3-3 were the same (about 70% of each destined for the superior colliculus) and differed from that of the TSP; and (5) the rates of catabolism of the axonally transported 14-3-2 and 14-3-3 were slightly greater than that of the TSP, with half-lives for 14-3-2 and 14-3-3 estimated to be 11 and 10 days, respectively.  相似文献   
72.
Summary The effects of chlorpromazine hydrochloride (CPZ HCl) and prochlorperazin-metansulfonate (PCPZ) on the fast axonal transport of labelled proteins were examined in vitro in a peripheral frog nerve.A 0.1 mM concentration of CPZ HCl and PCPZ reduced the amount of transported proteins by more than 50 per cent. An almost complete block was obtained with a 0.5 mM concentration of these two drugs. The lower concentration hardly affected the protein synthesis. The transport inhibiting effect of 0.1 mM of the drugs was reversible but not that of the higher concentration.The number of microtubuli was strongly decreased and the number of filaments increased at the transport inhibiting concentrations. The ultrastructural changes induced by 0.1 mM of the phenothiazine tranquilizer were largely reversible. The local anesthetics lidocaine (18.3 mM) and tetracaine (3.3 mM) both caused similar changes, i.e. a reduction in the number of microtubuli. No ultrastructural effects were observed after treatment with 1 mM ouabain. These three drugs are known to block the axonal flow in the present system at the above mentioned concentrations.The biochemical and ultrastructural results are discussed in relation to those induced by other drugs affecting axonal transport.The present work was supported by grants from Statens Naturvetenskapliga Forskningsråd (No. 2535-8), C.-B. Nathorsts Vetenskapliga och Allmännyttiga Stiftelser, the Swedish Medical Research Council (B73-12X-2543-05B), H. Hierta's Stiftelse and W. och M. Lundgrens Stiftelse. Thanks are due to Mrs B. Egnér, Mrs E. Fjällstedt, Mrs. E. Norström and Mrs U. Svedin for expert technical assistance.  相似文献   
73.
The synthesis and transport of slowly transported polypeptides in sciatic nerves of rats was investigated by [35S]methionine pulse labeling and gel electrophoresis in control, diabetic, and insulin-treated diabetic rats. To detect very early changes diabetes was induced by streptozocin only 5 days prior to the labeling of the dorsal root ganglion cells. Fourteen days were allowed for axonal transport. In this experimental system, the neurofilament triplet is transported at an apparent velocity of 1.1 +/- 0.1 mm/day (mean +/- SD). The actin-related complex, including actin and two polypeptides of 87 kilodaltons and 37 kilodaltons, was transported at a velocity of 2.6 +/- 0.2 mm/day. For alpha- and beta-tubulin we found an apparent transport velocity of 2.2 +/- 0.1 mm/day, placing it between actin and the neurofilament triplet. The diabetic rats had a selective 32% decrease in the amount of the heaviest neurofilament subunit: 0.47 +/- 0.19% of trichloroacetic acid-insoluble radioactivity versus 0.69 +/- 0.17% in controls; 2p less than 0.05. This decrease was associated with a proximal accumulation of the two lighter neurofilament subunits. Insulin treatment of a diabetic group failed to normalize the changes of axonal transport and additional changes suggesting a hypoglycemic injury was observed.  相似文献   
74.
Mechanisms of astrocyte-directed neurite guidance   总被引:5,自引:0,他引:5  
Astrocytes have recently become better recognized as playing vital roles in regulating the patterning of central nervous system neurites during development and following injury. In general, astrocytes have been shown to be supportive of neurite extension, but alterations in the biochemical properties of astrocytes in particular areas during development and in gliotic tissue may act to confine neurite outgrowth and thus provide guidance cues. In vivo studies indicate that restrictive astrocytes function through their altered expression of specific extracellular matrix molecules, including tenascin, chondroitin, and keratan sulfate proteoglycans. In addition, several in vitro models suggest that other cell surface molecules are utilized by restrictive astrocytes to direct neurite trajectories. Received: 5 May 1997 / Accepted: 6 June 1997  相似文献   
75.
76.
Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3′-DNA adducts, such as the 3′-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (Hisnuc) that attacks DNA adducts to form a covalent 3′-phosphohistidyl intermediate and a general acid/base His (Hisgab), which resolves the Tdp1-DNA linkage. A Hisnuc to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of Hisgab to Arg. However, here we report that expression of the yeast HisnucAla (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 Hisgab mutants, including H432N and the SCAN1-related H432R. Moreover, the HisnucAla mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the HisnucPhe mutant was catalytically inactive and suppressed Hisgab mutant-induced toxicity. These data suggest that the activity of another nucleophile when Hisnuc is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to Hisnuc, can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate.  相似文献   
77.
Summary The accumulation of both A and MAO proximal to a ligature on toad spinal nerves has been shown to occur at a slower rate than in mammals. As in mammals, there are two components of axonal transport in amphibian nerves, with the accumulation of A reaching a peak at between 4 and 7 days (cf. 2–4 days for NA in mammals), while MAO accumulation does not reach its maximum before 9 days (cf. 7 days in mammals). No accumulation occurs after sympathectomy, providing evidence for localization of MAO within amphibian sympathetic adrenergic nerves. Distal accumulation of MAO occurs in toad sympathetic nerves; this has not been reported to occur in mammalian nerves. Distal accumulation reaches a peak at 2–4 days, which suggests either a fast retrograde flow of MAO or that induction of MAO is occurring. These results are discussed in relation to differences between mammalian and amphibian sympathetic nerves and to the events occurring following ligation of these nerves.We wish to thank Judy Lenk, Vivienne Einhorn and Barbara Peachey for their assistance with the initial MAO histochemical work. This work was supported by grants from the National Heart Foundation of Australia and the Australian Research Grants Committee.  相似文献   
78.
Rapid axonal transport of glycoproteins was examined in the retinofugal projections of hypothermic and normothermic adult male Long-Evans hooded rats previously receiving intraocular injections of [3H]fucose. The amount of retinal fucosylation appeared normal in the hypothermic animals 3.5 h after isotope injection, but glycoprotein transport was reduced relative to normothermic controls. This reduction was especially pronounced in the most distal structure of the retinofugal tract (superior colliculus). We conclude that rapid axonal transport decreases with reductions in mammalian body temperature. This finding emphasizes the importance of controlling body temperature in in vivo studies of mammalian axonal transport.  相似文献   
79.
Summary 1. An immunohistochemical study has been made of the hypothalamo-neurohypophyseal system of the dog, 20h after crushing the pituitary stalk.2. By use of a cross-species-reactive neurophysin antiserum it was shown that neurophysin is a component of the axons which originate in the supraoptic and paraventricular nuclei and terminate around blood vessels in the posterior pituitary.3. Neurophysin specific fluorescence accumulated in axons proximal to the constriction but was absent from the axons immediately distal to the site of injury.4. In dogs left for six days it was shown by radioimmunoassay that the amount of neurophysin in the hypothalamus and stalk proximal to the constriction increased twofold while that remaining in the posterior pituitary and stalk distal to the constriction decreased five-fold over the same period.5. The results are interpreted as evidence for a rapid axonal transport of neurophysin from its site of synthesis in the cell bodies of the hypothalamus to the posterior pituitary. Acknowledgements: This work was supported by a research grant to D. B. Hope from the Medical Research Council. L. O. Uttenthal was supported by a Medical Research Training Award and B. G. Livett by a Nuffield Dominions Trust Demonstratorship (Australia). We thank Mrs. Marion Martin for radioimmunoassay of neurophysin, Miss Wendy Jones for technical assistance and the U.C.L.A. Brain Information Service for help with the bibliography.  相似文献   
80.
The study examined the subcellular distribution of [3H]glucosamine-labeled glycoconjugates undergoing axonal transport in 100,000 x g soluble and two membranous subfractions of the garfish olfactory nerve. Analysis was made of intact glycoconjugates and of glycopeptides and glycosaminoglycans derived from these molecules by limit protease digestion. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed labeling of a variety of high-molecular-weight molecules with a lower molecular weight distribution in the soluble fraction than in the membranous fractions. Following protease digestion, nearly two-thirds of transported radioactivity in glycopeptides was recovered in the plasma membrane-enriched subfraction, with the remainder equally divided between soluble and higher density membrane fraction. Comparison of the distribution of glycopeptide radioactivity and chemically assayed hexosamine revealed transport labeling of a large variety of different-sized neutral and acidic glycopeptides in all subfractions. Transport labeling of most glycoprotein carbohydrate chains was in proportion of their hexosamine content. Transported glycosaminoglycan label was most heavily concentrated in the plasma membrane fraction, whereas hexosamine was most concentrated in the higher density membrane fraction. The labeling pattern suggested both transported and nontransported pools of these molecules. The specific glycosaminoglycans chondroitin sulfate and heparan sulfate were recovered in all subfractions, whereas hyaluronic acid was confined to the soluble fraction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号