首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1534篇
  免费   29篇
  国内免费   36篇
  2023年   9篇
  2022年   16篇
  2021年   15篇
  2020年   9篇
  2019年   24篇
  2018年   25篇
  2017年   23篇
  2016年   15篇
  2015年   46篇
  2014年   89篇
  2013年   161篇
  2012年   93篇
  2011年   90篇
  2010年   72篇
  2009年   41篇
  2008年   53篇
  2007年   37篇
  2006年   27篇
  2005年   36篇
  2004年   33篇
  2003年   39篇
  2002年   22篇
  2001年   32篇
  2000年   24篇
  1999年   42篇
  1998年   30篇
  1997年   30篇
  1996年   30篇
  1995年   23篇
  1994年   39篇
  1993年   38篇
  1992年   38篇
  1991年   32篇
  1990年   29篇
  1989年   29篇
  1988年   45篇
  1987年   31篇
  1986年   28篇
  1985年   20篇
  1984年   18篇
  1983年   8篇
  1982年   13篇
  1981年   12篇
  1980年   5篇
  1979年   8篇
  1978年   3篇
  1977年   2篇
  1976年   4篇
  1973年   4篇
  1953年   2篇
排序方式: 共有1599条查询结果,搜索用时 15 毫秒
21.
Single-turnover flash-induced ATP synthesis coupled to natural cyclic electron flow in Photosystem I-enriched subchloroplast vesicles (from spinach) was continuously followed by the luciferin-luciferase luminescence. The ATP yield per flash was maximal (1 ATP per s per 1000 Chl) around a flash frequency of 0.5–2 Hz. It decreased both at lower and higher flash frequencies. The decrease at high flash frequency was due to limitation by the electron-transfer rate, while the decrease at low flash frequency was directly due to intrinsic properties of the ATPase itself. Carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP) decreased the yield at low frequency more than at high frequency. The same behaviour was observed if electron transfer was artificially mediated by pyocyanin. If the ADP concentration was increased from 40 to at least 80 μM, or if the vesicles were preincubated with 5 mM dithiothreitol (DTT), the decrease of the yield at flash frequencies below 0.5 Hz was no longer observed. Incubation with DTT increased the rates of ATP hydrolysis and synthesis at any flash frequency. The decrease of the yield could be elicited again by addition of 50 nM FCCP. It is concluded that at low levels of the protonmotive force (Δ gmH+), the ATPase is converted into an active ATP-hydrolyzing state in which ATP synthesis activity is decreased due to a decreased affinity towards ADP and/or to a decreased release of newly synthesized ATP, that can be cancelled by increasing the ADP concentration or by addition of DTT in the absence of uncoupler.  相似文献   
22.
Summary A cDNA clone in pBR322 that cross-hybridizes with a mouse carbonic anhydrase form II (CAII) probe has been sequenced and identified as mouse carbonic anhydrase form I (CAI). The 1224-base-pair clone encodes the entire 260-amino-acid protein and appears to contain an Alu-like element in the 3 untranslated region. The deduced amino acid sequence exhibits 77% homology to human CAI and contains 17 of the 20 residues that are considered unique to and invariant for all mammalian CAI isozymes. The results of a detailed comparison of the nucleic acid sequences spanning the coding regions of mouse CAI and rabbit CAI have been used to calibrate an evolutionary clock for the carbonic anhydrases (CAs). These data have been applied to a comparison of the mouse CAI and CAII nucleic acid sequences to calculate the divergence time between the two genes. The divergence-time calculation provides the first estimation of the evolutionary relationship between CAs based entirely on nucleotide sequence comparison.  相似文献   
23.
Summary A mathematical theory for computing the probabilities of various nucleotide configurations among related species is developed, and the probability of obtaining the correct tree (topology) from nucleotide sequence data is evaluated using models of evolutionary trees that are close to the tree of mitochondrial DNAs from human, chimpanzee, gorilla, orangutan, and gibbon. Special attention is given to the number of nucleotides required to resolve the branching order among the three most closely related organisms (human, chimpanzee, and gorilla). If the extent of DNA divergence is close to that obtained by Brown et al. for mitochondrial DNA and if sequence data are available only for the three most closely related organisms, the number of nucleotides (m*) required to obtain the correct tree with a probability of 95% is about 4700. If sequence data for two outgroup species (orangutan and gibbon) are available, m* becomes about 2600–2700 when the transformed distance, distance-Wagner, maximum parsimony, or compatibility method is used. In the unweighted pair-group method, m* is not affected by the availability of data from outgroup species. When these five different tree-making methods, as well as Fitch and Margoliash's method, are applied to the mitochondrial DNA data (1834 bp) obtained by Brown et al. and by Hixson and Brown, they all give the same phylogenetic tree, in which human and chimpanzee are most closely related. However, the trees considered here are gene trees, and to obtain the correct species tree, sequence data for several independent loci must be used.  相似文献   
24.
Summary We have mapped and sequenced the globin gene and seven surrounding Alu repeat sequences in the orangutan globin gene cluster and have compared these and other orangutan sequences to orthologously related human sequences. Noncoding flanking and intron sequences, synonymous sites of , , and globin coding regions, and Alu sequences in human and orangutan diverge by 3.2%, 2.7%, and 3.7%, respectively. These values compare to 3.6% from DNA hybridizations and 3.4% from the globin gene region. If as suggested by fossil evidence and molecular clock calculations, human and orangutan lineages diverged about 10–15 MYA, the rate of noncoding DNA evolution in the two species is 1.0–1.5×10–9 substitutions per site per year. We found no evidence for either the addition or deletion of Alu sequences from the globin gene cluster nor is there any evidence for recent concerted evolution among the Alu sequences examined. Both phylogenetic and phenetic distance analyses suggest that Alu sequences within the and globin gene clusters arose close to the time of simian and prosimian primate divergence (about 50–60 MYA). We conclude that Alu sequences have been evolving at the rate typical of noncoding DNA for the majority of primate history.Presented at the FEBS Symposium on Genome Organization and Evolution, held in Crete, Greece, September 1–5, 1986  相似文献   
25.
We isolated a mouse genomic clone that hybridized with small RNA present in the cytoplasm of the brain. The RNA was about 150 nucleotides long. This RNA seemed to be specific to the brain, since it was not found in the liver or kidney. The clone DNA contained a sequence homologous to 82-nucleotide "identifier" core sequence of cDNA clones of rat. The sequence contained a split promoter for RNA polymerase III and was flanked by a 12-nucleotide direct repeat (ATAAATAATTTA).  相似文献   
26.
Summary The mobile genetic element Tn4430, originating from the gram-positive bacterium, Bacillus thuringiensis, and previously described as the Th-sequence, is the first transposon isolated from the genus Bacillus. In the present work a gene (APH-III) conferring resistance to kanamycin was inserted into this 4.2 kb transposon. Transposition experiments showed that Tn4430APH-III could transpose in the gram-negative host Escherichia coli when its insertion functions were supplied by an intact copy of Tn4430. By transposing Tn4430APH-III directly onto pBR322, it was possible to determine the nucleotide sequence of the terminal inverted repeats of Tn4430 and of the target DNA site. Identical 38 bp in inverted orientation are situated at each end of the transposon and there is a direct duplication of 5 bp at the insertion site. Thus, it is clear that Tn4430 is closely related to the transposons belonging to the Tn3 family (class II elements).  相似文献   
27.
Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli   总被引:41,自引:0,他引:41  
Summary DNA fragments of 3.4 kb containing the gyrB gene were cloned from Escherichia coli KL-16 and from spontaneous nalidixic acid-resistant mutants. The mutations (nal-24 and nal-31) had been determined to be in the gyrB gene by transduction analysis. Nucleotide sequence analysis of the cloned DNA fragments revealed that nal-24 was a G to A transition at the first base of the 426th codon of the gyrB gene, resulting in an amino acid change from aspartic acid to asparagine, and nal-31 was an A to G transition at the first base of the 447th codon, resulting in an amino acid change from lysine to glutamic acid. This indicates that mutations in the gyrB gene are responsible for nalidixic acid resistance.  相似文献   
28.
Pea chloroplasts were found to take up actively ATP and ADP and exchange the external nucleotides for internal ones. Using carrier-free [14C]ATP, the rate of nucleotide transport in chloroplasts prepared from 12–14-day-old plants was calculated to be 330 μmol ATP/g chlorophyll/min, and the transport was not affected by light or temperature between 4 and 22°C. Adenine nucleotide uptake was inhibited only slightly by carboxyatractylate, whereas bongkrekic acid was nearly as effective an inhibitor of the translocator in pea chloroplasts as it was in mammalian mitochondria. There was no counter-transport of adenine nucleotides with substrates carried on the phosphate translocator including inorganic phosphate, 3-phosphoglycerate and dihydroxyacetone phosphate. However, internal or external phosphoenolpyruvate, normally considered to be transported on the phosphate carrier in chloroplasts, was able to exchange readily with adenine nucleotides. Furthermore, inorganic pyrophosphate which is not transported by the phosphate carrier initiated efflux of phosphoenolpyruvate as well as ATP from the chloroplast. These findings illustrate some interesting similarities as well as differences between the various plant phosphate and nucleotide transport systems which may relate to their role in photosynthesis.  相似文献   
29.
用重组DNA技术及序列分析法测定了南方菜豆花叶病毒RNA基因组3′端1,000个碱基的序列,以及由此序列推导出的整个外壳蛋白的氨基酸顺序,它与巳报导的基本上一致。介绍了用DNA的寡核苷酸水解混合物作为起始引物,以3′端不含PolyA尾巴且不能加上PolyA的病毒RNA作为模板合成互补DNA,及进一步无性繁殖此cDNA的方法。  相似文献   
30.
Summary The previous simple model for treating concerted evolution of multigene families has been revised to be compatible with various new observations on the immunoglobulin variable region family and other families. In the previous model, gene conversion and unequal crossing-over were considered, and it was assumed that genes are randomly arranged on the chromosome; neither subdivision nor correlation of gene identity and chromosomal distance were considered. Although this model satisfactorily explains the observed amino acid diversity within and between species, it fails to predict the very ancient branching of the mouse immunoglobulin heavy chain V-gene family. By incorporating subdivided structure and genetic correlation with chromosomal distance into the simple model, the data of divergence may be satisfactorily explained, as well as the rate of nucleotide substitution and the amino acid diversity. The rate at which a V-gene is duplicated or deleted by conversion or by unequal crossing-over is estimated by the new model to be on the order of 10–6 per year. The model may be applicable to other multigene families, such as those coding for silkmoth chorion or mammalian kallikrein.Contribution no. 1560 from the National Institute of Genetics, Mishima, 411 Japan  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号