首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1030篇
  免费   15篇
  国内免费   3篇
  1048篇
  2023年   5篇
  2022年   5篇
  2021年   7篇
  2020年   9篇
  2019年   12篇
  2018年   9篇
  2017年   4篇
  2016年   12篇
  2015年   15篇
  2014年   22篇
  2013年   30篇
  2012年   28篇
  2011年   12篇
  2010年   18篇
  2009年   51篇
  2008年   54篇
  2007年   48篇
  2006年   46篇
  2005年   31篇
  2004年   32篇
  2003年   28篇
  2002年   19篇
  2001年   18篇
  2000年   16篇
  1999年   21篇
  1998年   24篇
  1997年   29篇
  1996年   26篇
  1995年   26篇
  1994年   28篇
  1993年   31篇
  1992年   24篇
  1991年   31篇
  1990年   23篇
  1989年   21篇
  1988年   26篇
  1987年   24篇
  1986年   16篇
  1985年   16篇
  1984年   16篇
  1983年   3篇
  1982年   26篇
  1981年   22篇
  1980年   25篇
  1979年   20篇
  1978年   24篇
  1977年   14篇
  1972年   1篇
排序方式: 共有1048条查询结果,搜索用时 171 毫秒
31.
In the natural environment, plants communicate with various microorganisms (pathogenic or beneficial) and exhibit differential responses. In recent years, research on microbial volatile compounds (MVCs) has revealed them to be simple, effective and efficient groups of compounds that modulate plant growth and developmental processes. They also interfere with the signaling process. Different MVCs have been shown to promote plant growth via improved photosynthesis rates, increased plant resistance to pathogens, activated phytohormone signaling pathways, or, in some cases, inhibit plant growth, leading to death. Regardless of these exhibited roles, the molecules responsible, the underlying mechanisms, and induced specific metabolic/molecular changes are not fully understood. Here, we review current knowledge on the effects of MVCs on plants, with particular emphasis on their modulation of the salicylic acid, jasmonic acid/ethylene, and auxin signaling pathways. Additionally, opportunities for further research and potential practical applications presented.  相似文献   
32.
Structural changes of tissues in unpollinated ovaries of Pisum sativum L. cv. Alaska after treatment with different plant growth substances (gibberellic acid, 2,4-dichlorophenoxyacetic acid, and 6-benzyladenine) or decapitation of the plant were studied. All the treatments resulted in the prevention of cellular disorganization associated with ovary senescence. They effected the enlargement of mesocarp cells and the differentiation of endocarp cells in very similar patterns, suggesting a similar induction of the structural processes involved in fruit development. Ultrastructural changes in mesocarp cells after treatment with gibberellic acid showed that rapid enlargement of mesocarp cells was sustained mainly by a reorganization of the membrane systems directed to the sysnthesis of primary cell wall. Early changes in the subcellular components in mesocarp cells were observed as the first symptoms in ovary senescence.  相似文献   
33.
H. Edelmann  P. Schopfer 《Planta》1989,179(4):475-485
The kinetics of inhibition by protein- and RNA-synthesis inhibitors (cycloheximide and cordycepin, respectively) of indole-3-acetic acid (IAA)-induced elongation growth were investigated using abraded coleoptile segments of Zea mays L. Removal of the cuticle — a diffusion barrier for solutes — by mechanical abrasion of the outer epidermal cell wall increased the effectiveness of inhibitors tremendously. In an attempt to elucidate the role of growth-limiting protein(s) (GLP) in the growth mechanism the following results were obtained. The elongation induced by IAA was completely inhibited when cycloheximide (10 mol·l-1) was applied to abraded coleoptile segments as shortly as 10 min before the onset of the growth response (=5 min after administration of IAA). However, when cycloheximide was applied after 60 min of IAA treatment (when a steady-state growth rate is reached), the time required for complete cessation of growth was much longer (about 40 min). Cycloheximide inhibited the incorporation of [3H]leucine into protein within about 5 min. Cordycepin (400 mol·l-1) prevented IAA-induced growth when applied as shortly as 25 min before the onset of the growth response (=10 min before administration of IAA) but required more than 60 min for a full inhibition of steady-state growth. The incorporation of [3H]adenosine into RNA was inhibited by cordycepin within 10 min. It is concluded that, contrary to previous investigations with nonabraded organ segments, the initiation of growth by IAA depends directly on the synthesis of GLP. Moreover, the apparent lifetime of GLP is at least four times longer than the time required by cycloheximide to inhibit the initiation of growth by IAA. This is interpreted to mean that GLP is not present before IAA starts to act but is synthesized as a consequence of IAA action starting a few minutes before the initiation of growth. Interpreting the kinetics of growth inhibition by cordycepin in a similar way, we further conclude that GLP synthesis is mediated by IAA-induced synthesis of the corresponding mRNA which starts about 10 min before the onset of GLP synthesis. Inhibition by cycloheximide and cordycepin of IAA-induced growth cannot be alleviated by acidifying the cell wall to pH 4-5, indicating that these inhibitors do not act on growth via an inhibition of auxin-mediated proton excretion.Abbreviations CHI cycloheximide - COR cordycepin - GLP growth-dimiting protein(s) - IAA indole-3-acetic acid - mRNAGLP mRNA coding for GLP  相似文献   
34.
A mechanism of respiration-dependent water uptake enhanced by auxin   总被引:2,自引:0,他引:2  
Summary There are many contradictory observations on the mechanohydraulic relation of growing higher plant cells and tissues. Graphical analysis of the simultaneous equations which govern irreversible wall yielding and water absorption has made more comprehensive the understanding of this relation when relative growth rate is plotted against turgor pressure. It suggests that some respiration-dependent and auxin sensitive process might regulate the difference of osmotic potential between cells and water source. Based on anatomical and electrophysiological knowledge of the pea stem xylem, we propose the wall canal system as the mechanism of respiration-dependent water uptake which is sensitive to auxin. This system consists of the xylem apoplastic walls, the xylem proton pumps, active solute uptake system and cell membranes. In the simplest case, third-order simultaneous differential equations are involved. Numerical analysis showed that net uptake of solutes enables water to be taken up against an opposing gradient of water potential. The behaviour of this wall canal system describes well the mechano-hydraulic relation of enlarging plant cells and tissues. Recent typical, but incompatible, interpretations of this relation are critically discussed based on our model.Abbreviations V the volume of enlarging symplast - the average extensibility of the wall - Pi turgor pressure - Y the yield threshold of the wall - L the relative hydraulic conductance - the solute reflection coefficient of the plasmamembrane - Ci the osmotic concentration of the symplast cells - Cx the osmotic concentration of the xylem vessels - Px hydrostatic pressure in the xylem vessels - R the gas constant - T absolute temperature - o water potential of xylem fluid - i water potential of symplast cells  相似文献   
35.
Rearrangement of cellulose microfibrils within cell-wall matrices is considered one of the most critical steps in the regulation of both the orientation and extent of cell expansion in plants. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a family of enzymes that mediate the construction and restructuring of load-bearing cross links among cellulose microfibrils. The Arabidopsis thaliana XTH genes AtXTH17, 18, 19, and 20 are phylogenetically closely related to one another and are preferentially expressed in the roots. However, they exhibit different expression profiles within the root and respond to hormonal signals differently. To investigate their functions in root growth, we examined phenotypes of loss-of-function mutants for these genes using T-DNA insertion lines and RNAi plants. These functional analyses disclosed a principal role for the AtXTH18 gene in primary root elongation. Of the four XTH genes, AtXTH18 exhibits the highest level of mRNA expression. We also determined auxin-signaling pathways for these genes using a mutant with a defect in the AXR2/IAA7 gene and found that the expression of AtXTH19 in the elongation/maturation region of the root is under the control of the AXR2/IAA7 signaling pathway.  相似文献   
36.
Germinating seed ofDalbergia dolichopetala converted both [2H5]l-tryptophan and [2H5]indole-3-ethanol to [2H5]indole-3-acetic acid (IAA). Metabolism of [2-14C]IAA resulted in the production of indole-3-acetylaspartic acid (IAAsp), as well as several unidentified components, referred to as metabolites I, II, IV and V. Re-application of [14C]IAAsp to the germinating seed led to the accumulation of the polar, water-soluble compound, metabolite V, as the major metabolite, together with a small amount of IAA. Metabolites I, II and IV were not detected, nor were these compounds associated with the metabolism of [2-14C]IAA by shoots and excised cotyledons and roots from 26-d-oldD. dolichopetala seedlings. Both shoots and cotyledons converted IAA to IAAsp and metabolite V, while IAAsp was the only metabolite detected in extracts from excised roots. The available evidence indicates that inDalbergia, and other species, IAAsp may not act as a storage product that can be hydrolysed to provide the plant with a ready supply of IAA.Abbreviations HPLC-RC high-performance liquid chromatography-radiocounting - IAA indole-3-acetic acid - IAAsp indole-3-acetylaspartic acid - IAlnos 2-O-indole-3-acetyl-myo-inositol - IEt indole-3-ethanol  相似文献   
37.
Ziziphora tenuior L. (Lamiaceae) is an aromatic herb used for its medicinal values against fungi, bacteria. Micropropagation can be used for large-scale multiplication of essential oil producing plants thus avoiding an overexploitation of natural resources. This work aims to develop a reliable protocol for the in vitro propagation of Z. tenuior, and to compare the antioxidant activity between in vitro propagated and wild plants.The explants were sterilized and cultured on MS medium containing different concentrations of growth regulators naphthalene acetic acid (NAA) or indole-3-butyric acid (IBA) with 0.5 mg/L of kinetin (Kin) callus formation was 70.2% after 45 days of incubation in dark on medium supplemented with 1.5 mg/L of NAA. After one month of callus culture on medium supplemented with 2 mg/L BA the shoot number was 5.12 and for the multiplication stage. The shoot number was 4.21 and length was 6.17 cm on medium supplemented with 1 mg/L Kin + 0.1 mg/L NAA.DPPH• reagent was used to test the antioxidant activity. The aqueous and methanol extracts of in vitro plants which were treated with 1.5 and 1 mg/L of kin plus 0.1 mg/L of NAA showed a strong DPPH• scavenging activity where IC50 was 0.307 and 0.369 mg/ml, respectively, while the IC50 of aqueous and methanol extracts of wild plants was 0.516 and 9.229 mg/ml, respectively. Our results suggested that plant growth regulators and in vitro culture conditions increased the antioxidant activity.  相似文献   
38.
39.
Cytokinins inhibit hypocotyl elongation in darkness but have no obvious effect on hypocotyl length in the light. However, we found that cytokinins do promote hypocotyl elongation in the light when ethylene action is blocked. A 50% increase in Arabidopsis thaliana (L.) Heynh. hypocotyl length was observed in response to N6-benzyladenine (BA) treatment in the presence of Ag+. The level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid was strongly increased, indicating that ethylene biosynthesis was up-regulated by treatment with cytokinin. Furthermore, the effects of cytokinins on hypocotyl elongation were also tested using a series of mutants in the cascade of the ethylene-signal pathway. In the ethylene-insensitive mutants etr1-3 and ein2-1, cytokinin treatment resulted in hypocotyl lengths comparable to those of wild-type seedlings treated with both Ag+ and BA. A similar phenotypical response to cytokinin was observed when auxin transport was blocked by -naphthylphthalamic acid (NPA). Applied cytokinin largely restored cell elongation in the basal and middle parts of the hypocotyls of NPA-treated seedlings and at the same time abolished the NPA-induced decrease in indole-3-acetic acid levels. Our data support the hypothesis that, in the light, cytokinins interact with the ethylene-signalling pathway and conditionally up-regulate ethylene and auxin synthesis.  相似文献   
40.
A study of transport and action of synthetic auxin analogues can help to identify transporters and receptors of this plant hormone. Both aspects--transportability and action on growth--were tested with 2-naphthoxyacetic acid (2-NOA) and compared across several plant species. 2-NOA stimulates elongation effectively at low concentrations in petioles of the gymnosperm Ginkgo biloba L., in hypocotyls or internodes of the dicot legumes, mung bean (Vigna mungo L.) and pea (Pisum sativum L.), in cotyledons of onion (Allium cepa L.) and in leaf bases of chive (Allium schoenoprasum L.), the latter two of the monocot order Asparagales. In contrast, elongation of coleoptile segments of maize (Zea mays L.) is poorly responsive to 2-NOA. Significant auxin-like transport of 2-NOA was observed in segments of mung bean hypocotyls, pea internodes, and chive leaf bases, but not in segments of the grass coleoptiles. Thus, for the two assays, elongation and polar transportability, the same difference in ligand specificity was observed between the grass and all other species assayed. This finding supports the hypothesis that a common protein mediates auxin efflux as well as auxin action on elongation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号