首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   862篇
  免费   6篇
  国内免费   1篇
  869篇
  2023年   4篇
  2022年   4篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   5篇
  2017年   2篇
  2016年   4篇
  2015年   10篇
  2014年   18篇
  2013年   22篇
  2012年   24篇
  2011年   9篇
  2010年   10篇
  2009年   38篇
  2008年   47篇
  2007年   35篇
  2006年   41篇
  2005年   27篇
  2004年   24篇
  2003年   23篇
  2002年   17篇
  2001年   16篇
  2000年   13篇
  1999年   18篇
  1998年   20篇
  1997年   24篇
  1996年   20篇
  1995年   22篇
  1994年   26篇
  1993年   27篇
  1992年   21篇
  1991年   27篇
  1990年   21篇
  1989年   18篇
  1988年   24篇
  1987年   24篇
  1986年   16篇
  1985年   15篇
  1984年   15篇
  1983年   2篇
  1982年   23篇
  1981年   18篇
  1980年   23篇
  1979年   20篇
  1978年   24篇
  1977年   14篇
排序方式: 共有869条查询结果,搜索用时 0 毫秒
11.
George J. P. Murphy 《Planta》1980,149(5):417-426
Naphthalene-1-acetic acid (NAA) binding by membrane fractions derived from maize has been re-evaluated. Using a computer curve-fitting procedure only one major type of NAA binding, in terms of binding affinity, could be identified. Auxins, antiauxins and structurally related compounds have been tested for their competitive effect on NAA binding and the inhibitor constants for a number of these have been determined. Extracts from various plant species have been examined for their NAA binding ability, but all showed much less binding than maize leaf or coleoptile preparations. The possibility of the NAA binding by maize extracts being due to a true hormone receptor is discussed.Abbreviations BA benzoic acid - CPIB p-chlorophenoxyisobutyric acid - 2,4-D 2,4-dichlorophenoxyacetic acid - DCB 2,4-dichlorobenzoic acid - IAA indolyl-3-acetic acid - NAA napthalene-1-acetic acid - 2-NAA napthalene-2-acetic acid - NAOA napthalene-2-oxyacetic acid - PA phenylacetic acid - PU phenylurea - 2,4,5-T 2,4,5-trichlorophenoxyacetic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   
12.
J. Eliezer  D. A. Morris 《Planta》1979,147(3):216-224
The velocity and intensity of basipetal transport of 14C-labelled indol-3yl-acetic acid (IAA) applied to the apical bud of the intact pea plant were influenced by the temperature to which the stem was exposed and were not influenced by changes in the temperature of the root system when this was controlled independently between 5°C and 35°C. The velocity of transport increased steadily with temperature to a maximum in excess of 35°C and then fell sharply with further increase in temperature. The Q10 for velocity, determined from Arrhenius plots, was low (ca. 1.3). Transport intensity increased to a maximum at about 25°C (Q10=2.2) and then declined gradually with further increase in temperature. It is suggested that transport velocity and transport intensity are controlled independently.The characteristics of auxin transport through the stem were not affected by removal of the root system, or by the withdrawl of root aeration. Labelled IAA did not pass a region of the stem cooled to about 1.0°C, or through a narrow zone of stem tissue killed by heat treatment. In the latter case the heat treatment was shown not to interfere with the upward transport of water in the xylem. Labelled IAA continued to move into, and to accumulate in, the tissues immediately above a cooled or heat-killed region of the stem. It was concluded that the long-distance basipetal transport of auxin through the stem of the intact plant is driven by the transporting cells themselves and is independent of the activity of sinks for the transported auxin.The fronts of the observed tracer profiles in the stem were closely fitted by error function diffusion analogue curves. However, diffusion of IAA alone could not account for the observed characteristics of the transport and it is suggested that the curvilinear fronts of the profiles resulted from a diffusive mixing of exogenous IAA (or IAA-carrier complexes) with endogenous IAA already in the transport pathway.Abbreviations IAA indol-3yl-acetic acid - IAAsp indol-3yl-acetyl aspartic acid - CFM methyl 2-chloro-9-hydroxyfluorene-9-carboxylate (morphactin) - TIBA 2,3,5-triiodobenzoic acid - ABA abscisic acid  相似文献   
13.
The effect of red (R) and far-red (FR) light on stem elongation and indole-3-acetic acid (IAA) levels was examined in dwarf and tall Pisum sativum L. seedlings. Red light reduced the extension-growth rate of etiolated seedlings by 70–90% after 3 h, and this inhibition was reversible by FR. Inhibition occurred throughout the growing zone. After 3 h of R, the level of extractable IAA in whole stem sections from the growing zone of etiolated plants either increased or showed no change. By contrast, extractable IAA from epidermal peels consistently decreased 3 h after R treatments. Decreases of 40% were observed for epidermal peels from the top 1 cm of tall plants receiving 3 h R. Brief R treatments resulted in smaller decreases in epidermal IAA levels and these decreases were not as great when FR followed R. In lightgrown plants, end-of-day FR stimulated growth during the following dark period in a photoreversible manner. The uppermost 1 cm of expanding third internodes was most responsive to the FR. Extractable IAA from epidermal peels from the upper 1 cm of third internodes increased by 30% or more 5 h after FR. When R followed the FR the increases were smaller. Levels of IAA in whole stem sections did not change and were twofold greater than in dark-grown plants. In both dark- and light-grown tall plants, IAA levels were lower in epidermal peels than in whole stem segments. These results provide evidence that IAA is compartmentalized at the tissue level within the growing stem and that phytochrome regulation of stem elongation rates may be partly based on modulating the level of IAA within the epidermis.Abbreviations IAA indole-3-acetic acid - R red light - FR farred light We thank Yu-Xian Zhu for helping to develop methods for IAA analysis, James Reid for supplying the genetic lines of Pisum and Richard Cyr for the use of microscopy equipment. This work was supported by NSF grant DCB-8801880 and by Hatch funds from the College of Agriculture and Life Sciences at Cornell University. The gas chromatograph-mass spectrometer was funded by NSF grant DMB-8505974 and funds from the College of Agriculture and Life Sciences at Cornell University. A preliminary report of some of these experiments has appeared in Plant Growth Substances, 1991 (Behringer et al. 1992 b).  相似文献   
14.
Summary Cultured cell lines from carrot (Daucus carota L.) with little or no embryogenic potential were examined for the auxin-binding capacity of their membranes. The lines belonged to different classes: (a) wild-type lines kept in culture for different periods (the longer the period, the lower being their embryogenic potential); (b) variants, isolated after mutagenesis, showing normal growth but a lack of embryogenic response; (c) auxin-resistant lines, isolated as colonies on solid media containing 45 M 2,4-d; (d) a previously described tumorous line (E9) isolated because of its resistance to hypomethylating drugs. All of these lines showed alterations in auxin-induced, auxin-binding capacity (modulation), i.e. in the non-embryogenic lines the addition of auxin increased the auxinbinding capacity to a very small degree, or removal of the hormone did not produce the proper decrease in that capacity, or both defects could be simultaneously present. Both types of defects were shown to be correctable: after treatments designed to increase the amplitude of modulation, embryogenic capacity was restored in a number of lines.  相似文献   
15.
Decapitation or red light irradiation (R) inhibited growth and Golgi-localized glucan synthetase (GS I) activity in the mesocotyl of intact maize (Zea mays L.) seedlings. Applied auxin (indole-3-acetic acid) prevented the effects of R and of decapitation on both growth and GS I. Auxin applied several hours after irradiation prevented any further decline in GS I but did not restore it. Mesocotyl segments incubated in solution elongated in response to auxin but lost GS I with time regardless of the presence of exogenous auxin. An attached seed was necessary for maintenance of GS I in the dark-grown mesocotyl.Abbreviations GS glucan synthetase - IAA indole-3-acetic acid - R red light  相似文献   
16.
A specific solid-phase enzyme immunoassay for the detection of as little as 3–4 pg of indole-3-acetic acid (IAA) is described. The assay involves minimal procedural efforts and requires only standard laboratory equipment. Up to 50 samples in triplicate, processed simultaneously, can be assayed and evaluated in 2.5 h. As little as 1 mg oat coleoptile tissue is sufficient for a quantitative IAA analysis and little or no extract purification is necessary. Using this assay, levels of IAA have been determined in coleoptiles of maize and oat. The distribution of IAA within single coleoptiles was quantitated and the production of IAA during the regeneration of the physiological tip in Avena coleoptiles was investigated. The changes in levels of IAA and other major phytohormones were quantitated during the growth of oat coleoptiles.Abbreviations ABA abscisic acid - BHT butylated hydroxytoluene - BSA bovine serum albumin - IAA indole-3-acetic acid - TBS Trishydroxymethylaminomethane buffered saline Part 21 in the series Use of Immunoassay in Plant Science  相似文献   
17.
Ravenelia esculenta Naras. and Thirum. is a rust, pathogenic to Acacia eburnea Willd. The infection leads to hypertrophy changing the morphology with bizarre shapes of plant organs. Healthy and infected tissues were subjected to extraction of IAA and indole derivatives and were estimated by spectrophotometric methods. The hypertrophy produced was presumed to be due to increase in the indole-3-acetic acid (IAA) content in the infected tissue, however, the amount of IAA in infected tissues decreased with the progression of disease. Concomitantly, the infected tissue showed the presence of a novel, slow migrating, indole derivative on TLC. Cultured shoot tips of Withania somnifera were dosed with the methanolic extract of the infected hypertrophied tissue (MEHT) (0.25, 0.5, 0.75, 1.00 and 1.25 mg/l). The stimulation in shoot growth along with profuse rooting was observed in a dose dependent manner with maximum at 1.00 and 1.25 mg/l concentration.  相似文献   
18.
We identified the gene responsible for three allelic lazy1 mutations of Japonica rice (Oryza sativa L.) by map-based cloning, complementation and RNA interference. Sequence analysis and database searches indicated that the wild-type gene (LAZY1) encodes a novel and unique protein (LAZY1) and that rice has no homologous gene. Two lazy1 mutants were LAZY1 null. Confirming and advancing the previously reported results on lazy1 mutants, we found the following. (i) Gravitropism is impaired, but only partially, in lazy1 coleoptiles. (ii) Circumnutation, observed in dark-grown coleoptiles, is totally absent from lazy1 coleoptiles. (iii) Primary roots of lazy1 mutants show normal gravitropism and circumnutation. (iv) LAZY1 is expressed in a tissue-specific manner in gravity-sensitive shoot tissues (i.e. coleoptiles, leaf sheath pulvini and lamina joints) and is little expressed in roots. (v) The gravitropic response of lazy1 coleoptiles is kinetically separable from that absent from lazy1 coleoptiles. (vi) Gravity-induced lateral translocation of auxin, found in wild-type coleoptiles, does not occur in lazy1 coleoptiles. Based on the genetic and physiological evidence obtained, it is concluded that LAZY1 is specifically involved in shoot gravitropism and that LAZY1-dependent and -independent signaling pathways occur in coleoptiles. It is further concluded that, in coleoptiles, only the LAZY1-dependent gravity signaling involves asymmetric distribution of auxin between the two lateral halves and is required for circumnutation.  相似文献   
19.
A sensitive and specific radioimmunoassay was used to determine quantitatively four of the most important phytohormones in the phloem exudate from 14 different tree species of 8 genera. For cytokinins and indole-3-acetic acid (IAA) we found higher concentrations than those reported previously for other species. The gibberellin values were of the same order of magnitude as in earlier analyses (with different methods) of tree phloem exudates, but lower than the ones reported for Ricinus. Free abscisic acid (ABA) was found in tree phloem exudates in similar concentrations as before in Yucca or palm phloem exudate, but at considerably lower ones than reported for Ricinus and in Lupinus phloem exudate.Abbreviations IAA indole-3-acetic acid - ABA abscisic acid - GA gibberellic acid  相似文献   
20.
The capacity of young and mature Sequoia sempervirens clones to produce roots in vitro was studied after wounding and indole-3-butyric acid (IBA) treatments. Rooting was not observed in mature or in young cuttings cultivated for 30 days in medium without IBA. The presence of 25 μ M IBA in the medium resulted in the appearance of roots at the base of the cuttings. More roots appeared and grew faster on cuttings of the young than on the mature clone. This difference in rooting capacity between young and mature cuttings may be related to differences in the hormone levels at the base of the 5 mm long cuttings during the first 4 days of the root inductive period. After HPLC fractionation. IAA. IBA and related compounds, including indole-3-aspartic acid (IAAsp) and IBA-glucose ester (IBA-GE), were determined by MS and MS-MS and their levels measured by ELISA. Another immunoreactive compound was also found and determined to be N,N-dimethyltryptophan (DMT), a compound previously reported to inhibit auxin-enhanced ethylene production. Wounding of the stem without IBA treatment revealed a transient increase in IAA, IAAsp and DMT levels in young cuttings while a dramatic increase in the levels of DMT was observed in mature cuttings. Following IBA treatment. IAA levels increased in both clones, but higher levels were measured in the young than in the mature clone. IBA and IBA-GE were also found but in higher levels in the mature clone. Thus, the difficult-to-root mature clone differs from the young clone in its auxin metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号