首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6078篇
  免费   574篇
  国内免费   97篇
  6749篇
  2024年   17篇
  2023年   78篇
  2022年   94篇
  2021年   118篇
  2020年   170篇
  2019年   211篇
  2018年   242篇
  2017年   164篇
  2016年   167篇
  2015年   181篇
  2014年   280篇
  2013年   374篇
  2012年   130篇
  2011年   300篇
  2010年   331篇
  2009年   351篇
  2008年   455篇
  2007年   407篇
  2006年   372篇
  2005年   349篇
  2004年   278篇
  2003年   263篇
  2002年   199篇
  2001年   100篇
  2000年   90篇
  1999年   98篇
  1998年   118篇
  1997年   89篇
  1996年   68篇
  1995年   86篇
  1994年   64篇
  1993年   60篇
  1992年   45篇
  1991年   41篇
  1990年   32篇
  1989年   31篇
  1988年   30篇
  1987年   24篇
  1986年   16篇
  1985年   24篇
  1984年   57篇
  1983年   34篇
  1982年   39篇
  1981年   26篇
  1980年   24篇
  1979年   11篇
  1978年   3篇
  1977年   4篇
  1972年   1篇
  1958年   1篇
排序方式: 共有6749条查询结果,搜索用时 15 毫秒
41.
Antimicrobial peptides (AMPs) appear as chemical compounds of increasing interest for their role in killing bacteria and, more recently, for their ability to bind endotoxin (lipopolysaccharide, LPS) that is released during bacterial infection and that may lead to septic shock. This dual role in the mechanism of action can further be enhanced in a synergistic way when two or more AMPs are combined together. Not all AMPs are able to bind LPS, suggesting that several modes of binding to the bacterial surface may exist. Here we analyze a natural AMP, crabrolin, and two mutated forms, one with increased positive charge (Crabrolin Plus) and the other with null charge (Crabrolin Minus), and compare their binding abilities to LPS. While Crabrolin WT as well Crabrolin Minus do not show binding to LPS, the mutated Crabrolin Plus exhibits binding and forms a well defined structure in the presence of LPS. The results strengthen the importance of positive charges for the binding to LPS and suggest the mutated form with increased positive charge as a promising candidate for antimicrobial and antiseptic activity.  相似文献   
42.
Label‐free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label‐free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho‐molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr‐path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi‐wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label‐free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.   相似文献   
43.
《Free radical research》2013,47(5-6):395-407
Spin trapping of short-lived R. radicals is done by use of N-tert-butylhydroxylamine (1) and H2O2. The hydroxylamine is oxidized to the radical t-BuN(O)H (2) which is converted into the spin trap 2-methyl-2-nitrosopropane (3). Simultaneously, hydroxyl radicals. OH are formed from H2O2. The latter radical species abstracts hydrogen atoms from suitable molecules HR to give R. radicals, which are trapped with the formation of aminooxyl radicals, i. e., t-BuN(O)R (4) detectable by EPR spectroscopy. The reaction is enhanced by the presence of iron ions. The cleavage of H2O2 into. OH radicals is considered to involve both a radical-driven (t-BuN(O)H 2) and an iron-driven Fenton reaction.  相似文献   
44.
We describe a reflection‐based method for the quantitative detection of carotenoid antioxidants in living human skin. The skin tissue site of interest is illuminated with broad‐band white light spanning the spectral range from 350–850 nm and the spectral composition of the diffusively reflected light is analyzed in real time. Topical pressure is applied to temporarily squeeze blood out of the illuminated tissue volume. In this way the influence of oxy‐hemoglobin on the reflection spectra is effectively reduced. After a short optical clearing time the carotenoid absorption becomes easily discernable in a 460–500 nm spectral window and its optical density can be calculated with high accuracy. Our empirical methodology provides a non‐invasive rapid determination of skin carotenoid levels, can be used to monitor skin carotenoid concentration changes over time in response to carotenoid containing natural or supplemental diets, and is easily adaptable for applications in clinical and field settings. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
45.
Steady-state and time-resolved fluorescence spectroscopy and fluorescence microscopy of leukocyte flavoproteins have been performed. Both living human peripheral blood monocytes and neutrophils have been utilized as experimental models, as the former relies much more heavily on mitochondrial metabolism for energy production than the latter. We confirm previous studies indicating that cellular flavoproteins absorb at 460 nm and emit at 530 nm, very similar to that of the FAD moiety. Furthermore, the emission properties of intracellular flavoproteins were altered by the metabolic inhibitors rotenone, antimycin A, azide, cyanide, DNP (2,4-dinitrophenol), and FCCP [carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone]. Kinetic studies revealed flavoprotein emission oscillations in both monocytes and neutrophils. The flavoprotein intensity oscillations correlated with the physiological status of the cell and the nature of membrane receptor ligation. Microscopy revealed the presence of flavoprotein fluorescence in association with the plasma membrane, intracellular granules and distributed throughout the cytoplasm, presumably within mitochondria. Metabolic inhibitors such as cyanide suggest that the plasma membrane and granular components are cyanide-insensitive and therefore are likely associated with the flavoprotein component of the NADPH oxidase, which is located in these two compartments. This interpretation was found to be consistent with structural localization of the NADPH oxidase using an antibody molecule specific for this protein. Using peripheral blood neutrophils, which display less active mitochondria, and time-resolved emission spectroscopy, we show that the NADPH oxidase-associated flavoprotein undergoes a periodic transient reduction of about 54±2 ms in living cells. This finding is consistent with prior studies indicating that propagating substrate (NADPH) waves periodically promote electron transport across the NADPH oxidase.  相似文献   
46.
Complexes of Zn(II), Cu(II) and Co(II) with either N-(2-methylpyridyl)-3-thienyl-alkyl-carboxamide or N-(2-pyridyl)-3-thienylalkyl-carboxamide groups have been prepared and characterized. Crystal structures of ten new complexes are reported and discussed. N-(2-Methylpyridyl)-3-thienyl-alkyl-carboxamide exhibits both uni- and bidentate behavior. With all ligands, bidentate complexation is through the carbonyl oxygen and pyridine nitrogen atoms (O, N) and the amide nitrogen atom remains protonated. The electrochemical behavior and the infrared spectra of selected complexes are discussed.  相似文献   
47.
The use of fullerenes with two or more adducts as acceptors has been recently shown to enhance the performance of bulk‐heterojunction solar cells using poly(3‐hexylthiophene) (P3HT) as the donor. The enhancement is caused by a substantial increase in the open‐circuit voltage due to a rise in the fullerene lowest unoccupied molecular orbital (LUMO) level when going from monoadducts to multiadducts. While the increase in the open‐circuit voltage is obtained with many different polymers, most polymers other than P3HT show a substantially reduced photocurrent when blended with fullerene multiadducts like bis‐PCBM (bis adduct of Phenyl‐C61‐butyric acid methyl ester) or the indene C60 bis‐adduct ICBA. Here we investigate the reasons for this decrease in photocurrent. We find that it can be attributed partly to a loss in charge generation efficiency that may be related to the LUMO‐LUMO and HOMO‐HOMO (highest occupied molecular orbital) offsets at the donor‐acceptor heterojunction, and partly to reduced charge carrier collection efficiencies. We show that the P3HT exhibits efficient collection due to high hole and electron mobilities with mono‐ and multiadduct fullerenes. In contrast the less crystalline polymer Poly[[9‐(1‐octylnonyl)‐9H‐carbazole‐2,7‐diyl]‐2,5‐thiophenediyl‐2,1,3‐benzothiadiazole‐4,7‐diyl‐2,5‐thiophenediyl (PCDTBT) shows inefficient charge carrier collection, assigned to low hole mobility in the polymer and low electron mobility when blended with multiadduct fullerenes.  相似文献   
48.
Direct measurements of aboveground plant biomass are often not feasible, thus various biomass proxies are in use. To obtain biomass estimates, these proxies are calibrated against actual biomass, and the resulting proxy-biomass relationship is often used across multiple years and experimental treatments within a study. We investigated how the proxy-biomass relationship varied across years and considered interannual precipitation variability as a contributing factor.We sampled a perennial grassland for ten consecutive years (2003–2012) in central Hungary and estimated vegetation cover and Normalized Difference Vegetation Index (NDVI); two frequently used biomass proxies representing two contrasting methods. Aboveground live herbaceous plant biomass was harvested from each plot after sampling, and regression models were used to assess the relationship between biomass proxies and actual aboveground biomass.We found that cover and NDVI were equally effective at estimating biomass. However, the relationship between either biomass proxy and actual biomass varied amongst years, and this was related to the amount of precipitation. In wetter years, proxy-biomass relationships were steeper than in drier years.These results indicate that using the same proxy-biomass relationship across different years or precipitation regimes may not be valid and may introduce systematic error into biomass estimations in long-term studies or precipitation manipulation experiments.  相似文献   
49.
Abstract

We propose some specific DNA conformations that explain, in terms of molecular conformations, the anomalous gel electrophoretic behavior of the sequences (VA4T4X)1, and (V2A3X2)1 where V and X are either G or C. Previously (J. Biomole. Struct. Dyn. 4, 41, 1986) we considered hydrophobic interactions a mong aliphatic hydrocarbon groups in A/T sequences. In the sequences (T)n · (A)n, the T's are slightly bent to yield structures with tightly stacked methyl groups along one side of the major groove. By folding together the two pairs of stacked methyls on the opposite sides of the major groove, TTAA might yield a relatively sharp bend. On this basis, we show below that the sequences (VT4A4X)1 might form a very tightly coiled super-helix whereas the sequences (VA4T4X)1 form a broad super-helix of radius ~ 120 A for i = 25. The sequence (V2A3T3X2)1 forms a slightly smaller radius super-helix. The time of passage through the gel has been taken to be inversely proportional to the smallesuiimension of the molecule. Specifically we are taking the ratio of the apparent molecular weight to the actual molecular weight to be related to the moment of inertia I1 about the smallest principal axis of the molecular conformation. We find a good fit to the experimental gel mobility data of Hagerman (2) if we assume this ratio to be proportional to (I1)1/5.  相似文献   
50.
Lu W  Negi SS  Oberhauser AF  Braun W 《Proteins》2012,80(5):1308-1315
Use of atomic force microscopy (AFM) has recently led to a better understanding of the molecular mechanisms of the unfolding process by mechanical forces; however, the rational design of novel proteins with specific mechanical strength remains challenging. We have approached this problem from a new perspective that generates linear physical–chemical properties (PCP) motifs from a limited AFM data set. Guided by our linear sequence analysis, we designed and analyzed four new mutants of the titin I1 domain with the goal of increasing the domain's mechanical strength. All four mutants could be cloned and expressed as soluble proteins. AFM data indicate that at least two of the mutants have increased molecular mechanical strength. This observation suggests that the PCP method is useful to graft sequences specific for high mechanical stability to weak proteins to increase their mechanical stability, and represents an additional tool in the design of novel proteins besides steered molecular dynamics calculations, coarse grained simulations, and ?‐value analysis of the transition state. Proteins 2012; © 2011 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号