首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19045篇
  免费   671篇
  国内免费   464篇
  20180篇
  2024年   21篇
  2023年   172篇
  2022年   344篇
  2021年   354篇
  2020年   412篇
  2019年   725篇
  2018年   684篇
  2017年   397篇
  2016年   447篇
  2015年   498篇
  2014年   1050篇
  2013年   1405篇
  2012年   620篇
  2011年   1142篇
  2010年   758篇
  2009年   878篇
  2008年   934篇
  2007年   1033篇
  2006年   928篇
  2005年   870篇
  2004年   721篇
  2003年   678篇
  2002年   571篇
  2001年   412篇
  2000年   358篇
  1999年   382篇
  1998年   420篇
  1997年   322篇
  1996年   290篇
  1995年   306篇
  1994年   245篇
  1993年   203篇
  1992年   190篇
  1991年   147篇
  1990年   124篇
  1989年   115篇
  1988年   104篇
  1987年   96篇
  1986年   67篇
  1985年   111篇
  1984年   155篇
  1983年   99篇
  1982年   94篇
  1981年   67篇
  1980年   73篇
  1979年   42篇
  1978年   22篇
  1977年   21篇
  1974年   18篇
  1973年   19篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
《Phytomedicine》2014,21(5):670-675
The Cecropia genus is widely distributed in Latin America including at least 60 species, and some of them are commonly used in traditional medicine for the treatment of several diseases. We used Cecropia pachystachya Trécul to search for quorum sensing (QS) inhibitors compounds and found that the aqueous extract of C. pachystachya leaves is a promising source of substances with this activity. Using as biosensor Chromobacterium violaceum ATCC 31532 and Escherichia coli pSB403, the compounds chlorogenic acid (2), isoorientin (3), orientin (4), isovitexin (6), vitexin (7), and rutin (9) were identified as QS inhibitors. None of these compounds inhibited the growth of neither the used biosensors nor the microorganisms Staphylococcus aureus ATCC 23591, Escherichia coli ATCC 25922 and Saccharomyces cerevisiae, used here as growth inhibition controls. Along with the rutin, here we presented for the first time the QS-inhibition potential of the C-glycosyl flavonoids. The prospective of this evidence lead to the use of these compounds as antipathogenic drugs or antifoulants.  相似文献   
22.
The CDKN1C gene encodes a cyclin‐dependent kinase inhibitor and is one of the key genes involved in the development of Beckwith–Wiedemann syndrome and cancer. In this study, using a direct sequencing approach based on a single nucleotide polymorphism (SNP) at genomic DNA and cDNA levels, we show that CDKN1C exhibits monoallelic expression in all seven studied organs (heart, liver, spleen, lung, kidney, muscle and subcutaneous fat) in cattle. To investigate how methylation regulates imprinting of CDKN1C in cattle, allele‐specific methylation patterns in two putative differential methylation regions (DMRs), the CDKN1C DMR and KvDMR1, were analyzed in three tissues (liver, spleen and lung) using bisulfite sequencing PCR. Our results show that in the CDKN1C DMR both parental alleles were unmethylated in all three analyzed tissues. In contrast, KvDMR1 was differentially methylated between the two parental alleles in the same tissues. Statistical analysis showed that there is a significant difference in the methylation level between the two parental alleles (< 0.01), confirming that this region is the DMR of KvDMR1 and that it may be correlated with CDKN1C imprinting.  相似文献   
23.
24.
Mitosis is the key event of the cell cycle during which the sister chromatids are segregated onto two daughter cells. It is well established that abrogation of the normal mitotic progression is a highly efficient concept for anti‐cancer treatment. In fact, various drugs that target microtubules and thus interfere with the function of the mitotic spindle are in clinical use for the treatment of various human malignancies for many years. However, since microtubule inhibitors not only target proliferating cells severe side effects limit their use. Therefore, the identification of novel mitotic drug targets other than microtubules have gained recently much attention. This review will summarize the latest developments on the identification and clinical evaluation of novel mitotic drug targets and will introduce novel concepts for chemotherapy that are based on recent progress in our understanding how mitotic progression is regulated and how anti‐mitotic drugs induce tumor cell death. J. Cell. Biochem. 111: 258–265, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
25.
A number of carbobenzoxy-dipeptide-amides raise the bilayer to hexagonal phase transition temperature of dielaidoylphosphatidylethanolamine (stabilizes the bilayer). The potency of the peptides in stabilizing the bilayer phase is Z-Tyr-Leu-NH2= Z-Gly-Phe-NH2>Z-Ser-Leu-NH2>Z-Gly-Leu-NH2>Z-Gly-Gly-NH2. A linear correlation was found between the respective HPLC retention time parameterk for the peptide and the slope of the bilayer stabilization curve determined with model membranes by differential scanning calorimetry. One dipeptide, Z-Ser-Leu-NH2, reduces measles virus cytopathic effect (CPE) in Vero cells. The mechanism by which this peptide reduces the CPE is not known, although some peptides which raise the bilayer to hexagonal phase transition temperature of phospholipids inhibit membrane fusion.Abbreviations Z carbobenzoxy - DEPE dielaidoylphosphatidylethanolamine - DSC differential scanning calorimetry - HPLC high pressure liquid chromatography - CPE cytopathic effect To whom correspondence should be addressed.  相似文献   
26.
Glycogen synthase was partially purified from canine brain to about 70% purity. The purified enzyme showed differences from the properties of the skeletal muscle enzyme with respect to molecular weights of the holoenzyme and subunit and phosphopeptide mapping. The multifunctional calmodulin-dependent protein kinase from the brain phosphorylated brain glycogen synthase with concomitant inactivation of the enzyme. Although about 1.3 mol of phosphate/mol subunit was maximally incorporated into glycogen synthase, 0.4 mol of phosphate/mol subunit was sufficient for the maximal inactivation of the enzyme. The results indicate that brain glycogen synthase is regulated in a calmodulin-dependent manner similarly to the skeletal muscle enzyme, but that the brain enzyme is different from the skeletal muscle enzyme.  相似文献   
27.
The proposed structural protein of peripheral nerve myelin, P0, has been shown to have several covalent modifications. In addition to being glycosylated, sulfated, and acylated, P0 is phosphorylated, with the intracellular site of this latter addition being in question. By employing nerve injury models that exhibit different levels of P0 biosynthesis in the absence and presence of myelin assembly, we have examined the cellular location of P0 phosphorylation. It is demonstrated that there is comparable P0 phosphorylation in both normal and crush-injured adult rat sciatic nerves, although the level of biosynthesis of P0 differs between these myelin maintaining and actively myelinating nerve models, respectively. The glycoprotein does not appear to be phosphorylated readily in the transected adult sciatic nerve, a preparation in which P0 biosynthesis is observed but that lacks myelin membrane. These observations suggest that the modification is not associated with the biosynthesis or maturation of P0 in the endoplasmic reticulum or Golgi, but that it instead occurs after myelin assembly. That P0 phosphorylation occurs in the normal nerve even when translation is inhibited by cycloheximide treatment lends further support to this conclusion. P0 is shown to be phosphorylated on one or more serine residues, with all or most of the phosphate group(s) being labile as evidenced by pulse-chase analysis. Addition of a biologically active phorbol ester, 12-O-tetradecanoylphorbol-13-acetate or 4 beta-phorbol 12,13-dibutyrate, substantially increases the extent of [32P]orthophosphate incorporation into the glycoprotein of normal and crushed nerve but not transected nerve. Biologically inactive 4 alpha-phorbol 12,13-didecanoate has no effect on P0 phosphorylation. Similarly, the addition of the cyclic AMP analog 8-bromo-cyclic AMP causes no appreciable changes in P0 labeling. These findings indicate that the phorbol ester-sensitive enzyme, protein kinase C, may be responsible for the phosphorylation of P0 within the myelin membrane.  相似文献   
28.
The endogenous phosphorylation of serotonin binding protein (SBP), a soluble protein found in central and peripheral serotonergic neurons, inhibits the binding of 5-hydroxytryptamine (5-HT, serotonin). A protein kinase activity that copurifies with SBP (SBP-kinase) was partially characterized and compared with calcium/calmodulin-dependent protein kinase II (CAM-PK II). SBP itself is not the enzyme since heating destroyed the protein kinase activity without affecting the capacity of the protein to bind [3H]5-HT. SBP-kinase and CAM-PK II kinase shared the following characteristics: (1) size of the subunits; (2) autophosphorylation in a Ca2+-dependent manner; and (3) affinity for Ca2+. In addition, both forms of protein kinase phosphorylated microtubule-associated proteins well and did not phosphorylate myosin, phosphorylase b, and casein. Phorbol esters or diacylglycerol had no effect on either of the protein kinases. However, substantial differences between SBP-kinase and CAM-PK II were observed: (1) CAM enhanced CAM-PK II activity, but had no effect on SBP-kinase; (2) synapsin I was an excellent substrate for CAM-PK II, but not for SBP-kinase; (3) 5-HT inhibited both the autophosphorylation of SBP-kinase and the phosphorylation of SBP, but had no effect on CAM-PK II. These data indicate that SBP-kinase is different from CAM-PK II. Phosphopeptide maps of SBP and SBP-kinase generated by digestion with S. aureus V8 protease are consistent with the conclusion that these proteins are distinct molecular entities. It is suggested that phosphorylation of SBP may regulate the transport of 5-HT within neurons.  相似文献   
29.
30.
Interleukin 2 (IL 2) is a polypeptide growth factor essential for the proliferation and differentiation of T lymphocytes, large granulocytic lymphocytes, and, potentially, cells of the antibody-producing lineage, B lymphocytes. Many of the biological properties of IL 2 may be mimicked or potentiated by a potent class of tumor promoters, phorbol esters. Phorbol esters have recently been shown to associate with and activate a unique phospholipid/Ca2+-dependent phosphotransferase, protein kinase C (PK-C). Utilizing two-dimensional gel electrophoresis, we have compared the IL 2 and diacylglycerol-induced protein phosphorylation patterns of several IL 2-dependent murine cell lines. Both IL 2 and synthetic diacylglycerol, 1-oleyl-2-acetylglycerol (OAG), stimulated phosphorylation of a number of protein substrates in intact cells compared to unstimulated controls. Three groups of substrates were identified; the first showed increased phosphorylation following stimulation with either IL 2 or OAG, while the second and third groups showed increased phosphorylation following stimulation with IL 2 but not OAG, and with OAG but not IL 2, respectively. Here, we characterize the kinetics of phosphorylation of one cellular substrate, p68, which appears to be phosphorylated in response to direct activators of PK-C or lymphoid or myeloid growth factors in their respective lineage cell lines. The observation that IL 2 also stimulates a unique series of phosphoproteins in addition to those induced by direct PK-C activators suggests that IL 2 may initiate additional protein kinase activities, unrelated to PK-C, which may also be critical for the ligand-receptor signal transduction process regulating growth and gene expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号