首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10697篇
  免费   1950篇
  国内免费   1401篇
  2024年   88篇
  2023年   515篇
  2022年   504篇
  2021年   840篇
  2020年   700篇
  2019年   728篇
  2018年   542篇
  2017年   548篇
  2016年   468篇
  2015年   508篇
  2014年   669篇
  2013年   811篇
  2012年   491篇
  2011年   562篇
  2010年   450篇
  2009年   593篇
  2008年   605篇
  2007年   575篇
  2006年   472篇
  2005年   416篇
  2004年   361篇
  2003年   335篇
  2002年   266篇
  2001年   224篇
  2000年   164篇
  1999年   173篇
  1998年   150篇
  1997年   123篇
  1996年   119篇
  1995年   111篇
  1994年   102篇
  1993年   83篇
  1992年   82篇
  1991年   71篇
  1990年   50篇
  1989年   48篇
  1988年   41篇
  1987年   43篇
  1986年   35篇
  1985年   55篇
  1984年   47篇
  1983年   32篇
  1982年   53篇
  1981年   32篇
  1980年   28篇
  1979年   20篇
  1978年   27篇
  1977年   24篇
  1976年   17篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
972.
Biochemical, crystallographic, and computational data support the hypothesis that electrostatic interactions are among the dominant forces in stabilizing hyperthermophilic proteins. The thermostable beta-glycosidase from the hyperthermophile Sulfolobus solfataricus (Ssbeta-gly) is an interesting model system for the study of protein adaptation to high temperatures. The largest ion-pair network of Ssbeta-gly is located at the tetrameric interface of the molecule; in this paper, key residues in this region were modified by site-directed mutagenesis and the stability of the mutants was analyzed by kinetics of thermal denaturation. All mutations produced faster enzyme inactivation, suggesting that the C-terminal ionic network prevents the dissociation into monomers, which is the limiting step in the mechanism of Ssbeta-gly inactivation. Moreover, the calculated reaction order showed that the mechanism of inactivation depends on the mutation introduced, suggesting that intermediates maintaining enzymatic activity are produced during the inactivation transition of some, but not all, mutants. Molecular models of each mutant allow us to rationalize the experimental evidence and give support to the current theories on the mechanism of ion pair stabilization in proteins from hyperthermophiles.  相似文献   
973.
Keskin O  Ji X  Blaszcyk J  Covell DG 《Proteins》2002,49(2):191-205
6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) belongs to a class of catalytic enzymes involved in phosphoryl transfer and is a new target for the development of novel antimicrobial agents. In the present study, the fundamental consideration is to view the overall structure of HPPK as a network of interacting residues and to extract the most cooperative collective motions that define its global dynamics. A coarse-grained model, harmonically constrained according to HPPK's crystal structure is used. Four crystal structures of HPPK (one apo and three holo forms with different nucleotide and pterin analogs) are studied with the goal of providing insights about the function-dynamic correlation and ligand induced conformational changes. The dynamic differences are examined between HPPK's apo- and holo-forms, because they are involved in the catalytic reaction steps. Our results indicate that the palm-like structure of HPPK is nearly rigid, whereas the two flexible loops: L2 (residues 43-53) and L3 (residues 82-92) exhibit the most concerted motions for ligand recognition and presumably, catalysis. These two flexible loops are involved in the recognition of HPPKs nucleotide and pterin ligands, whereas the rigid palm region is associated with binding of these cognate ligands. Six domains of collective motions are identified, comprised of structurally close but not necessarily sequential residues. Two of these domains correspond to the flexible loops (L2 and L3), whereas the remaining domains correspond to the rigid part of the molecule.  相似文献   
974.
Glutaredoxin (Grx) is a 12-kDa thioltransferase that reduces disulfide bonds of other proteins and maintains the redox potential of cells. In addition to its oxidoreductase activity, we report here that a rice Grx (OsGrx) can also function as a GSH-dependent peroxidase. Because of this antioxidant activity, OsGrx protects glutamine synthetase from oxidative damage. Individually replacing the conserved Cys residues in OsGrx with Ser shows that Cys(23), but not Cys(26), is essential for the thioltransferase and GSH-dependent peroxidase activities. Kinetic characterization of OsGrx reveals that the maximal catalytic efficiency (V(max)/K(m)) is obtained with cumene hydroperoxide rather than H(2)O(2) or t-butyl hydroperoxide.  相似文献   
975.
BIG2 is one of the guanine nucleotide exchange factors (GEFs) for the ADP-ribosylation factor (ARF) family of small GTPases, which regulate membrane association of COPI and AP-1 coat protein complexes and GGA proteins. Brefeldin A (BFA), an ARF-GEF inhibitor, causes redistribution of the coat proteins from membranes to the cytoplasm and membrane tubulation of the Golgi complex and the trans-Golgi network (TGN). We have recently shown that BIG2 overexpression blocks BFA-induced redistribution of the AP-1 complex but not TGN membrane tubulation. In the present study, we constructed a dominant-negative BIG2 mutant and found that when expressed in cells it induced redistribution of AP-1 and GGA1 and membrane tubulation of the TGN. By contrast, the mutant did not induce COPI redistribution or Golgi membrane tubulation. These observations indicate that BIG2 is involved in trafficking from the TGN by regulating membrane association of AP-1 and GGA through activating ARF.  相似文献   
976.
The dramatically increasing number of new protein sequences arising from genomics 4 proteomics requires the need for methods to rapidly and reliably infer the molecular and cellular functions of these proteins. One such approach, structural genomics, aims to delineate the total repertoire of protein folds in nature, thereby providing three-dimensional folding patterns for all proteins and to infer molecular functions of the proteins based on the combined information of structures and sequences. The goal of obtaining protein structures on a genomic scale has motivated the development of high throughput technologies and protocols for macromolecular structure determination that have begun to produce structures at a greater rate than previously possible. These new structures have revealed many unexpected functional inferences and evolutionary relationships that were hidden at the sequence level. Here, we present samples of structures determined at Berkeley Structural Genomics Center and collaborators laboratories to illustrate how structural information provides and complements sequence information to deduce the functional inferences of proteins with unknown molecular functions.Two of the major premises of structural genomics are to discover a complete repertoire of protein folds in nature and to find molecular functions of the proteins whose functions are not predicted from sequence comparison alone. To achieve these objectives on a genomic scale, new methods, protocols, and technologies need to be developed by multi-institutional collaborations worldwide. As part of this effort, the Protein Structure Initiative has been launched in the United States (PSI; www.nigms.nih.gov/funding/psi.html). Although infrastructure building and technology development are still the main focus of structural genomics programs [1–6], a considerable number of protein structures have already been produced, some of them coming directly out of semi-automated structure determination pipelines [6–10]. The Berkeley Structural Genomics Center (BSGC) has focused on the proteins of Mycoplasma or their homologues from other organisms as its structural genomics targets because of the minimal genome size of the Mycoplasmas as well as their relevance to human and animal pathogenicity (http://www.strgen.org). Here we present several protein examples encompassing a spectrum of functional inferences obtainable from their three-dimensional structures in five situations, where the inferences are new and testable, and are not predictable from protein sequence information alone.  相似文献   
977.
Li X  Hu C  Liang J 《Proteins》2003,53(4):792-805
Protein representation and potential function are two important ingredients for studying protein folding, equilibrium thermodynamics, and sequence design. We introduce a novel geometric representation of protein contact interactions using the edge simplices from the alpha shape of the protein structure. This representation can eliminate implausible neighbors that are not in physical contact, and can avoid spurious contact between two residues when a third residue is between them. We developed statistical alpha contact potential using an odds-ratio model. A studentized bootstrap method was then introduced to assess the 95% confidence intervals for each of the 210 propensity parameters. We found, with confidence, that there is significant long-range propensity (>30 residues apart) for hydrophobic interactions. We tested alpha contact potential for native structure discrimination using several sets of decoy structures, and found that it often performs comparably with atom-based potentials requiring many more parameters. We also show that accurate geometric representation is important, and that alpha contact potential has better performance than potential defined by cutoff distance between geometric centers of side chains. Hierarchical clustering of alpha contact potentials reveals natural grouping of residues. To explore the relationship between shape and physicochemical representations, we tested the minimum alphabet size necessary for native structure discrimination. We found that there is no significant difference in performance of discrimination when alphabet size varies from 7 to 20, if geometry is represented accurately by alpha simplicial edges. This result suggests that the geometry of packing plays an important role, but the specific residue types are often interchangeable.  相似文献   
978.
Many living primates that feed on hard food have been observed to have thick-enameled molars. Among platyrrhine primates, members of the tribe Pitheciini (Cacajao, Chiropotes, and Pithecia) are the most specialized seed and nut predators, and Cebus apella also includes exceptionally hard foods in its diet. To examine the hypothesized relationship between thick enamel and hard-object feeding, we sectioned small samples of molars from the platyrrhine primates Aotus trivergatus, Ateles paniscus, Callicebus moloch, Cebus apella, Cacajao calvus, Chiropotes satanas, Pithecia monachus, and Pithecia pithecia. We measured relative enamel thickness and examined enamel microstructure, paying special attention to the development of prism decussation and its optical manifestation, Hunter-Schreger Bands (HSB). Cebus apella has thick enamel with well-defined but sinuous HSB overlain by a substantial layer of radial prisms. Aotus and Callicebus have thin enamel consisting primarily of radial enamel with no HSB, Ateles has thin enamel with moderately developed HSB and an outer layer of radial prisms, and the thin enamel of the pitheciins (Cacajao, Chiropotes, and Pithecia) has extremely well-defined HSB. Among platyrrhines, two groups that feed on hard objects process these hard foods in different ways. Cebus apella masticates hard and brittle seeds with its thick-enameled cheek teeth. Pitheciin sclerocarpic foragers open hard husks with their canines but chew relatively soft and pliable seeds with their molars. These results reveal that thick enamel per se is not a prerequisite for hard object feeding. The Miocene hominoid Kenyapithecus may have included hard objects in its diet, but its thick-enameled molars indicate that its feeding adaptations differed from those of the pitheciins. The morphology of both the anterior and posterior dentition, including enamel thickness and microstructure, should be taken into consideration when inferring the dietary regime of fossil species.  相似文献   
979.
Earlier studies from our laboratory have indicated insulin sensitizing action of chromium picolinate as the mechanism of its anti-diabetic activity in experimental models of type I and type II diabetes. In the present investigation, we have evaluated the effects of chronic administration of chromium picolinate on the functional and histological alterations of streptozotocin (STZ)-induced diabetes in rats. Type I diabetes was induced by intravenous injection of STZ (40 mg/kg) in adult rats, whereas, type II diabetes was induced by intraperitoneal injection of STZ (90 mg/kg) in 2-day old rat pups which in adulthood develop abnormalities resembling type II diabetes. Chromium picolinate was administered at 8 μg/ml in drinking water for 6 weeks and was found to improve glucose tolerance and increase insulin sensitivity of STZ-diabetic rats. This treatment decrease elevated serum creatinine and urea levels as well as elevated serum levels of hepatic enzymes of both groups of diabetic rats. Histopathological studies of kidney and liver show decrease in the intensity and incidence of vacuolations, cellular infiltration and hypertrophy of STZ and nSTZ (neonatal STZ) diabetic rats. Chronic treatment with chromium picolinate however, did not alter the normal function or morphology of control rats. Chronic chromium picolinate at the therapeutic doses that improved glucose tolerance, was observed to have no hepatotoxic or nephrotoxic potential. It was rather found to improve renal and hepatic function and to reduce abnormalities associated with STZ-diabetes. Chromium picolinate could play an important role in the long term management of diabetes mellitus.  相似文献   
980.
Excitable cells in many endocrine and neuronal systems display rhythms with periodicities on the order of many minutes. To observe firing patterns that represent the output of these rhythms requires a recording technique that can monitor electrophysiological activity for several hours without affecting cell behavior. A targeted extracellular approach (also known as loose-patch) accomplishes this objective. Because low resistance seals (<20 MΩ) do not influence the cell membrane and because the normal intracellular milieu is maintained, this approach is the least invasive method for monitoring the endogenous electrical activity of single cells. In this report, we detail our use of this technique to record the firing patterns of gonadotropin-releasing hormone (GnRH) neurons in brain slices continuously for several hours. Published: February 17, 2003 This publication makes use, with permission, of data and methodologies published in Nunemaker CS, DeFazio RA, Moenter SM. Estradiol-sensitive afferents modulate long-term episodic firing patterns of GnRH neurons.Endocrinology 2002; 143:2284–2292, Copyright 2002 by The Endocrine Society.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号