首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   5篇
  国内免费   14篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   10篇
  2012年   6篇
  2011年   3篇
  2010年   5篇
  2009年   13篇
  2008年   13篇
  2007年   8篇
  2006年   9篇
  2005年   16篇
  2004年   5篇
  2003年   9篇
  2002年   7篇
  2001年   9篇
  2000年   2篇
  1999年   11篇
  1998年   5篇
  1997年   10篇
  1996年   9篇
  1995年   3篇
  1994年   2篇
  1992年   5篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
51.
The cyanobacterium Spirulina Turpin is characterized by its regularly coiled trichomes. Under some conditions, its helical filaments can convert to abnormal morphologies, such as irregularly curved and even linear shapes, that had been considered as a permanent degeneration that could not be reversed. However, here we found that the linear filaments of Spirulina platensis Geitler could spontaneously revert to the helical form with the same morphology as the original filaments. Further studies showed that the ultrastructural, physiological, and biochemical characteristics of linear filaments were different from those of the original filaments, whereas they were the same for the reverted and the original filaments. The SDS‐PAGE analysis revealed at least four proteins or subunits related to Spirulina morphogenesis: The 21.9‐kDa and the 20.3‐kDa proteins were highly expressed in the helical filaments, whereas the 52.0‐kDa and the 31.8‐kDa proteins were highly expressed in the linear filaments. The random amplified polymorphic DNA analysis with 96 random primers showed that the genetic background of the reverted filaments was the same as that of the original filaments but distinct from that of the linear filaments. The results indicated that linear filaments of Spirulina could revert to the original morphology under certain conditions, and their other distinctive traits were regained.  相似文献   
52.
Arthrospira (Spirulina) platensis (Nordstedt) Gomont was cultivated under light‐limited conditions in 5‐L open tanks by daily supplying NH4Cl as nitrogen source. Exponentially increasing feeding rates were adopted to prevent ammonia toxicity. The total feeding time (T) was varied between 12 and 20 days, and the starting (m0) and total (mT) quantities of the nitrogen source per unit reactor volume were varied in the ranges 0.19–1.7 mM and 2.3–23.1 mM, respectively. This intermittent addition of the nitrogen source prevented ammonia from reaching inhibitory levels and ensured final cell concentrations (Xm) and cell productivities (Px) comparable with those of batch runs with KNO3. Moreover, the lower nitrogen addition due to the use of NH4Cl rather than KNO3 allowed for higher nitrogen‐to‐cell conversions (Yx/n). These results were evaluated using three‐factor, five‐level, central composite experimental planning, combined with the response surface methodology, selecting T, m0, and mT as the independent variables and Xm, Px, and Yx/n as the response variables. This approach allowed us to identify, through the simultaneous optimization of the variables, T=16 days, m0=1.7 mM, and mT=21.5 mM as the best conditions for A. platensis cultivation at 72 μmol photons·m?2·s?1. Under these conditions, a maximum cell concentration of 1239 mg ·L?1 was obtained, which is a value comparable with that obtained using KNO3 as nitrogen source and nearly coincident with the theoretical one estimated by the response surface methodology.  相似文献   
53.
c-Phycocyanin and allophycocyanin were separated and purified from Spirulina platensis by precipitation with ammonium sulphate, ion exchange chromatography and gel filtration chromatography. Pure c-phycocyanin and allophycocyanin were finally obtained with an A620/A280value of 5.06 and an A655/A280 value of 5.34, respectively.  相似文献   
54.
Spirulina platensis is a nonheterocystic filamentous blue-green alga (cyanobacterium). Large quantity of highly qualified spheroplasts were obtained by improved isolation method. The spheroplast has a wrinkled and porous surface. Their diameter ranged from 3.8 btm to 4. 6 μm. The activity of photosynthetic oxygen evolution in the spheroplasts was about 40 % of the intact cell. The absorption spectra of the filaments and spheroplasts at room temperature revealed that they had the same pigments, Chla, PC, PEC and carotenoid. In spheroplasts the relative content of PC and carotenoid decreased, and that of PEC increased. It implicated that the light absorption of Spirulina platensis could be influenced by the cell wall. Some differences existed between the original cells and spheroplasts in the low temperature fluorescence emission spectra. F757 of spheroplasts excited by 436 nm was reduced obviously and that excited by 580 nm was disapeared. F728/F685 and F640/F685 enhanced, and F693/F685 was reduced. F728/F640 was lower than that of the original cells. These results indicated that removing the cell wall may inhibit the PS Ⅱ activity and influence the F695 from core antenna pigment system.  相似文献   
55.
Nostoc muscorum and Spirulina platensis were grown under phosphate deficiency in order to investigate the role of internal phosphate pool and activity of alkaline phosphatase on poly-β-hydroxybutyrate (PHB) accumulation. PHB accumulation in N. muscorum increased to 22.7% of dry weight (dw) after 4 day of phosphate deficiency, while the internal phosphate pool reduced to the level of 0.02 μM mg dw−1 at a maximum APase activity of 2.57 nM PNP mg dw−1 h−1. In contrary, S. platensis depicted maxima of 1.39 nM PNP mg dw−1 h−1 on day 30 of incubation, which was about 2 fold lower than the observed value of N. muscorum. PHB content in S. platensis remained low even after prolonged phosphate starvation, and a rise only up to 3.5% of dw was recorded on day 60 of phosphate deficiency. Supplementation of NADPH exogenously to S. platensis cultures grown under phosphate deficiency favoured PHB accumulation in 10, 20 and 30 days old cultures, but not in the cultures grown under phosphate deficiency for 60 days. The possible role of phosphate limitation on PHB accumulation is discussed.  相似文献   
56.
Characterization of the photosynthetic electron transport in a mutant of Spirulina platensis, generated by chemical mutagenesis, demonstrated that the electron transfer from the plastoquinone (PQ) to cytochrome b6/f was slowed. Thermoluminescence (TL) measurements suggested the presence of reversed energy flow via PQ, which resulted in an emergence of the plant-like after-glow TL band at 45 degrees C that could be enhanced by the transthylakoidal pH gradient and could be eliminated by an uncoupler, FCCP. The localization of the changes in the electron transport of the mutant cells measured by various methods revealed that the re-oxidation of the PQ pool is hampered in the mutant compared to the wild-type cells. The reduction in energy migration was localized between PQ and PS I reaction centers.  相似文献   
57.
58.
In this article we investigate the simultaneous influence of feeding time and amount of urea added as a nitrogen source on the fed‐batch growth and composition of Arthrospira (Spirulina) platensis. Cultivations were performed in 5‐L minitanks at constant temperature (25°C) and light intensity (42 μmol photons/m2s), using exponentially increasing rate of urea addition, and varying the above independent variables in the ranges 9–15 days and 4.6–12.1 mM, respectively. Special emphasis was placed on the content of added high value fatty acids (e.g., γ‐linolenic acid) of concern for the food industry. To this purpose, a 22‐plus star central composite design was employed, and maximum cell concentration, cell productivity, yield of biomass on nitrogen added, protein content and fatty acids profile were evaluated by multiple regression analysis. The highest cell concentration (1759 mg/L) was obtained at feeding time of 14 days and amount of urea per unit reactor volume of 5.8 mM, while the highest contents of γ‐linolenic acid (27.5% of the lipid fraction) and proteins (77.2%) were obtained at 10 and 14 days and 5.8 and 10.8 mM, respectively. The results confirm the possibility of using urea as cheap nitrogen source to culture this nutritionally valuable cyanobacterium.  相似文献   
59.
Spirulina platensis is a multicellular edible blue‐green alga with abundant proteins (~60%). No report is available on the antitumor polypeptides from the whole proteins of S. platensis. In this study, for the first time, an antitumor polypeptide Y2 from trypsin digest of S. platensis proteins was obtained by using freeze‐thawing plus ultrasonication extraction, hydrolysis with four enzymes (trypsin, alcalase, papain, and pepsin), and gel filtration chromatography. The results showed that the degree of hydrolysis can be ordered as: trypsin (38.5%) > alcalase (31.2%) > papain (27.8%) > pepsin (7.1%). For MCF‐7 and HepG2 cells, at 250 µg/mL, the maximum inhibitory rate of Y2 was 97%, while standard drug 5‐FU was 55 and 97%, respectively. Furthermore, the nanoencapsulation of Y2 with chitosan (CS) was also investigated. After nanoencapsulation, the maximum encapsulation efficiency and polypeptides contents are 49 and 15%, respectively; and the antitumor activity is basically not lost. These data demonstrated the potential of nanopolypeptides (Y2‐CS) in food and pharmaceutical applications. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1230–1238, 2013  相似文献   
60.
Pladienolides are novel 12-membered macrolides produced by Streptomyces platensis Mer-11107. They show strong antitumor activity and are a potential lead in the search for novel antitumor agents. We sequenced the 65-kb region covering the biosynthetic gene cluster, and found four polyketide synthase genes (pldAI-pldAIV) composed of 11 modules, three genes involved in post-modifications (pldB-D), and a luxR-family regulatory gene (pldR). The thioesterase domain of pldAIV was more dissimilar to that of polyketide synthase systems synthesizing 12/14-membered macrolide polyketides than to that of systems synthesizing other cyclic polyketides. The pldB gene was identified as a 6-hydroxylase belonging to a cytochrome P450 of the CYP107 family. This was clarified by a disruption experiment on pldB, in which the disruptant produced 6-dehydroxy pladienolide B. Two genes located downstream of pldB, designated pldC and pldD, are thought to be a probable genes for 7-O-acetylase and 18, 19-epoxydase respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号