首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41953篇
  免费   1506篇
  国内免费   1774篇
  2023年   373篇
  2022年   612篇
  2021年   649篇
  2020年   788篇
  2019年   951篇
  2018年   981篇
  2017年   837篇
  2016年   858篇
  2015年   827篇
  2014年   1849篇
  2013年   3222篇
  2012年   1311篇
  2011年   1952篇
  2010年   1412篇
  2009年   1902篇
  2008年   2076篇
  2007年   2067篇
  2006年   1758篇
  2005年   1677篇
  2004年   1348篇
  2003年   1312篇
  2002年   1082篇
  2001年   864篇
  2000年   773篇
  1999年   721篇
  1998年   754篇
  1997年   701篇
  1996年   688篇
  1995年   652篇
  1994年   661篇
  1993年   604篇
  1992年   565篇
  1991年   501篇
  1990年   465篇
  1989年   456篇
  1988年   407篇
  1987年   424篇
  1986年   292篇
  1985年   650篇
  1984年   932篇
  1983年   635篇
  1982年   719篇
  1981年   569篇
  1980年   500篇
  1979年   444篇
  1978年   278篇
  1977年   272篇
  1976年   223篇
  1974年   185篇
  1973年   179篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
901.
Summary The ability of epidermal growth factor (EGF), insulinlike growth factor-1 (IGF-1), insulin, 12-O-tetradecanoylphorbol-13-acetate (TPA), and aurintricarboxylic acid (ATA) to protect the human breast cancer cell line MDA-231 from death induced by the anticancer drug adriamycin was investigated. Cell death was induced in the MDA-231 cells either by a short-time exposure to a high dose of adriamycin (2 μg · ml−1 · 1 h−1) and further culturing in the absence of the drug, or by continuous exposure to a low dose of adriamycin (0.3μg/ml). Cell death was evaluated after 48 h of incubation by several techniques (trypan blue dye exclusion, lactic dehydrogenase activity, cellular ATP content, transmission electron microscopy, and DNA fragmentation). EGF, TPA, and ATA, each at an optimal concentration of 20 ng/ml, 5 ng/ml, and 100μg/ml respectively, substantially enhanced survival of cells exposed either to a high or low dose of adriamycin. Neither IGF-1 nor insulin, each at concentrations of 20 ng/ml, had an effect on cell survival. The three survival factors enhanced protein synthesis in the untreated cells and attenuated the continuous decrease in protein synthesis in the adriamycin-treated cells. Moreover, the three survival factors protected the MDA-231 cells from death in the absence of protein synthesis (cycloheximide 30μg/ml). These results suggest that EGF, TPA, and ATA promote survival of adriamycin pretreated cells by at least two mechanisms: enhancement of protein synthesis and by a protein synthesis independent process, probably a posttranslational modification effect.  相似文献   
902.
利用胶体金免疫电镜定位技术对蚕豆叶肉细胞中ABA定位的研究表明,在以ABA抗体处理的切片中,叶绿体有大量的金颗粒标记,细胞质和细胞核也有金颗粒标记,但液泡和细胞壁中没有金颗粒标记。免疫染色前用胰蛋白酶处理可显著增强金颗粒标记密度,而不用EDC固定或以免疫前兔血清处理的切片中几乎没有金颗粒标记。本实验为蚕豆叶肉细胞中ABA的分布提供了直接的证据并说明了该技术是研究ABA定位的一种可靠的方法。  相似文献   
903.
Summary We recently reported (Harmon et al., J. Membrane Biol. 124:261–268, 1991) that sulfo-N-succinimidyl derivatives of long-chain fatty acids (SS-FA) specifically inhibited transport of oleate by rat adipocytes. These compounds bound to an 85–90 kD membrane protein which was also labeled by another inhibitor of FA transport [3H]DIDS (4,4-diisothiocyanostilbene-2-2-sulfonate). These results indicated that the protein was a strong candidate as the transporter for long-chain fatty acids. In this report we determined that the apparent size of the protein is 88 kD and its isoelectric point is 6.9. We used [3H]SS-oleate (SSO), which specifically labels the 88-kD protein, to isolate it from rat adipocyte plasma membranes. Identification of 15 amino acids at the N-terminus region revealed strong sequence homology with two previously described membrane glycoproteins: CD36, a ubiquitous protein originally identified in platelets and PAS IV, a protein that is enriched in the apical membranes of lipidsecreting mammary cells during lactation. Antibody against PAS IV cross-reacted with the adipocyte protein. This, together with the N-terminal sequence homology, suggested that the adipocyte protein belongs to a family of related intrinsic membrane proteins which include CD36 and PAS IV.  相似文献   
904.
Abstract: The binding of [3H]flunitrazepam, [3H]RO 5-4864, and [3H]PK 11195 to membrane preparations of the retina was studied in the turtle and rabbit. Only a single population of [3H]flunitrazepam binding sites was detected in the turtle, whereas two populations appeared to be present in the rabbit. No specific binding for [3H]RO 5-4864 and [3H]PK 11195 could be detected in the turtle. In rabbit, both ligands bound with high affinity, revealing a significant population of binding sites (KD values of 24 ± 2.3 and 2.2 ± 0.8 nM, and Bmax values of 440 ± 35 and 1,482 ± 110 fmol/mg of protein, respectively). The binding was temperature - and protein-dependent. Displacement studies showed a similar rank order of potency of various unlabeled ligands against both [3H]RO 5-4864 and [3H]PK 11195 (PK 11195 > Ro 5-4864 > flunitrazepam > flumazenil). These results suggest that peripheral-type benzodiazepine receptors are present in the retina of the rabbit, but not of the turtle.  相似文献   
905.
Abstract: Nordihydroguaiaretic acid (NDGA; a lipoxygenase inhibitor), LY-270766 (an inhibitor of 5-lipoxygenase), and the diacylglycerol lipase inhibitor RG 80267 completely eliminated potassium-evoked release of [3H]noradrenaline ([3H]NA) from the human neuroblastoma clone SH-SY5Y with IC50 values of 10, 15, and 30 μ M , respectively. In contrast, these inhibitors only partially inhibited carbachol-evoked release and had little effect on the calcium ionophore A23187-evoked release of NA in this cell line. Arachidonic acid partially inhibited potassium- and A23187-evoked release but did not reverse the inhibition of potassium-evoked release observed in the presence of RG 80267. These studies suggest that arachidonic acid (or its lipoxygenase products) are not important intermediates in the regulation of exocytosis in SH-SY5Y. This conclusion is strengthened by our studies in which SH-SY5Y cells were grown in medium supplemented with bovine serum albumin-linoleic acid (50 μ M ). Under these conditions there was a selective increase in content of membrane polyunsaturated fatty acids of the ω6 series, including arachidonic acid; however, these changes did not effect potassium-, veratridine-, carbachol-, or calcium ionophoreevoked release of [3H]NA.  相似文献   
906.
Abstract— The objective of the present experiments was to correlate changes in cellular energy metabolism, dissipative ion fluxes, and lipolysis during the first 90 s of ischemia and, hence, to establish whether phospholipase A2or phospholipase C is responsible for the early accumulation of phospholipid hydrolysis products. Ischemia was induced for 15–90 s in rats, extracellular K+ (K+e) was recorded, and neocortex was frozen in situ for measurements of labile tissue metabolites, free fatty acids, and diacylglycerides. Ischemia of 15-and 30-s duration gave rise to a decrease in phosphocreatine concentration and a decline in the ATP/free ADP ratio. Although these changes were accompanied by an activation of K+ conductances, there were no changes in free fatty acids until after 60s, when free arachidonic acid accumulated. An increase in other free fatty acids and in total diacylglyceride content did not occur until after anoxic depolarization. The results demonstrate that the early functional changes, such as activation of K+ conductances, are unrelated to changes in lipids or lipid mediators. They furthermore suggest that the initial lipolysis occurs via both phospholipase A2 and phospholipase C, which are activated when membrane depolarization leads to influx of calcium into cells.  相似文献   
907.
Regulation of γ-Aminobutyric Acid Synthesis in the Brain   总被引:3,自引:3,他引:0  
Abstract: γ-Aminobutyric acid (GABA) is synthesized in brain in at least two compartments, commonly called the transmitter and metabolic compartments, and because reglatory processes must serve the physiologic function of each compartment, the regulation of GABA synthesis presents a complex problem. Brain contains at least two molecular forms of glutamate decarboxylase (GAD), the principal synthetic enzyme for GABA. Two forms, termed GAD65 and GAD67, are the products of two genes and differ in sequence, molecular weight, interaction with the cofactor, pyridoxal 5′-phosphate (pyridoxal-P), and level of expression among brain regions. GAD65 appears to be localized in nerve terminals to a greater degree than GAD67, which appears to be more uniformly distributed throughout the cell. The interaction of GAD with pyridoxal-P is a major factor in the short-term regulation of GAD activity. At least 50% of GAD is present in brain as apoenzyme (GAD without bound cofactor; apoGAD), which serves as a reservoir of inactive GAD that can be drawn on when additional GABA synthesis is needed. A substantial majority of apoGAD in brain is accounted for by GAD65, but GAD67 also contributes to the pool of apoGAD. The apparent localization of GAD65 in nerve terminals and the large reserve of apo-GAD65 suggest that GAD65 is specialized to respond to short-term changes in demand for transmitter GABA. The levels of apoGAD and the holoenzyme of GAD (holoGAD) are controlled by a cycle of reactions that is regulated by physiologically relevant concentrations of ATP and other polyanions and by inorganic phosphate, and it appears possible that GAD activity is linked to neuronal activity through energy metabolism. GAD is not saturated by glutamate in synaptosomes or cortical slices, but there is no evidence that GABA synthesis in vivo is regulated physiologically by the availability of glutamate. GABA competitively inhibits GAD and converts holo- to apoGAD, but it is not clear if intracellular GABA levels are high enough to regulate GAD. There is no evidence of short-term regulation by second messengers. The syntheses of GAD65 and GAD67 proteins are regulated separately. GAD67 regulation is complex; it not only is present as apoGAD67, but the expression of GAD67 protein is regulated by two mechanisms: (a) by control of mRNA levels and (b) at the level of translation or protein stability. The latter mechanism appears to be mediated by intracellular GABA levels.  相似文献   
908.
Abstract: Changes in the extracellular levels of excitatory and inhibitory amino acid transmitters were studied in the rat striatum during penumbral ischaemia using intracerebral microdialysis. Effects of penumbral forebrain ischaemia were compared with those of ischaemia with sustained anoxic depolarisation and K+ (100 m M ). Comparisons were also made between different groups of animals at 2 and 24 h after dialysis probe implantation. The K+ stimulus did not provoke any release of excitatory amino acids in the 24-h group, probably reflecting a decrease of functional synapses adjacent to the probe. During 30 min of penumbral ischaemia, excitatory amino acids did not reach critical concentrations in the extracellular fluid, and increases in levels of inhibitory/modulatory amino acids were similar. On the other hand, severe transient ischaemia resulted in massive synchronous release of many neuroactive excitatory and inhibitory compounds, in both the 2- and 24-h groups. These and other data suggest that changes during severe ischaemia may arise from both neurotransmitter and metabolic pools. It is concluded that is- chaemic damage in the penumbra may not be related to extracellular neuroactive amino acid changes generated within this region.  相似文献   
909.
Abstract: The effects of γ-aminobutyric acid (GABA) on the spontaneous release of endogenous glutamic acid (Glu) or aspartic acid (Asp) and the effects of Glu on the release of endogenous GABA or [3H]GABA were studied in superfused rat cerebral cortex synaptosomes. GABA increased the outflow of Glu (EC5017.2 μM) and Asp (EC50 18.4 μM). GABA was not antagonized by bicuculline or picrotoxin. Neither muscimol nor (-)-baclofen mimicked GABA. The effects of GABA were prevented by GABA uptake inhibitors and were Na+ dependent. Glu enhanced the release of [3H]GABA (EC50 11.5 μM) from cortical synaptosomes. Glu was not mimicked by the glutamate receptor agonists N-methyl-d -aspartic, kainic, or quisqualic acid. The Glu effect was decreased by the Glu uptake inhibitor D-threo-hydroxyaspartic acid (THA) and it was Na+ sensitive. Similarly to Glu, D-Asp increased [3H]GABA release (EC50 9.9 μM), an effect blocked by THA. Glu also increased the release of endogenous GABA from cortex synaptosomes. In this case the effect was in part blocked by the (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor antagonist 6-cyano-7-nitroquinoxaiine-2, 3-dione, whereas the 6-cyano-7-nitroquinoxaline- 2, 3-dione-insensitive portion of the effect was prevented by THA. GABA increased the [3H]D-Asp outflow (EC50 13.7 μM) from hippocampal synaptosomes in a muscimol-, (-)- baclofen-, bicuculline-, and picrotoxin-insensitive manner. The GABA effect was abolished by blocking GABA uptake and was Na+ dependent. Glu increased the release of [3H]- GABA from hippocampal synaptosomes (EC50 7.1 μM) in an N-methyl-d -aspartic acid-, kainic acid-, or quisqualic acid-insensitive way. The effect of Glu was prevented by THA and was Na+ dependent. As in the cortex, the effect of Glu was mimicked by D-Asp in a THA-sensitive manner. It is proposed that high-affinity GABA or Glu heterocarriers are sited respectively on glutamatergic or GA- BAergic nerve terminals in rat cerebral cortex and hippocampus. The uptake of GABA may modulate Glu and Asp release, whereas the uptake of Glu may modulate the release of GABA. The existence of these heterocarriers is in keeping with the reported colocalization of GABA and Glu in some cortical and hippocampal neurons. Preliminary data suggest that these mechanisms may also be present in rat cerebellum and spinal cord.  相似文献   
910.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号