首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1669篇
  免费   161篇
  国内免费   139篇
  1969篇
  2024年   13篇
  2023年   27篇
  2022年   21篇
  2021年   52篇
  2020年   67篇
  2019年   79篇
  2018年   64篇
  2017年   72篇
  2016年   68篇
  2015年   61篇
  2014年   73篇
  2013年   122篇
  2012年   49篇
  2011年   100篇
  2010年   36篇
  2009年   99篇
  2008年   106篇
  2007年   95篇
  2006年   71篇
  2005年   70篇
  2004年   64篇
  2003年   47篇
  2002年   66篇
  2001年   71篇
  2000年   53篇
  1999年   45篇
  1998年   38篇
  1997年   50篇
  1996年   21篇
  1995年   25篇
  1994年   34篇
  1993年   27篇
  1992年   15篇
  1991年   13篇
  1990年   12篇
  1989年   14篇
  1988年   1篇
  1987年   7篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1958年   1篇
排序方式: 共有1969条查询结果,搜索用时 15 毫秒
61.
Climate warming is leading to shrub expansion in Arctic tundra. Shrubs form ectomycorrhizal (ECM) associations with soil fungi that are central to ecosystem carbon balance as determinants of plant community structure and as decomposers of soil organic matter. To assess potential climate change impacts on ECM communities, we analysed fungal internal transcribed spacer sequences from ECM root tips of the dominant tundra shrub Betula nana growing in treatments plots that had received long‐term warming by greenhouses and/or fertilization as part of the Arctic Long‐Term Ecological Research experiment at Toolik Lake Alaska, USA. We demonstrate opposing effects of long‐term warming and fertilization treatments on ECM fungal diversity; with warming increasing and fertilization reducing the diversity of ECM communities. We show that warming leads to a significant increase in high biomass fungi with proteolytic capacity, especially Cortinarius spp., and a reduction of fungi with high affinities for labile N, especially Russula spp. In contrast, fertilization treatments led to relatively small changes in the composition of the ECM community, but increased the abundance of saprotrophs. Our data suggest that warming profoundly alters nutrient cycling in tundra, and may facilitate the expansion of B. nana through the formation of mycorrhizal networks of larger size.  相似文献   
62.
Kelley  R. H.  Jack  J. D. 《Hydrobiologia》2002,482(1-3):41-47
Litter decomposition in temporary aquatic environments has not been experimentally studied as much as it has in perennial systems. However, litter is likely a critical resource for organisms inhabiting ephemeral aquatic habitats. In this study, we used litterbags under different conditions of submergence and water physical and chemical properties/characteristics to study mass and nutrient losses of terrestrial materials in an ephemeral karst lake in south-central Kentucky (USA). In the first experiment, which was designed to compare decomposition rates in submerged and dry sites, total mass and carbon declined more rapidly in the litter at fully submerged sites than in dry sites. In the second experiment, which was designed to compare decomposition rates in two different submerged environments, total mass and carbon showed similar decomposition trends between the two submerged areas with different seasonal temperature patterns. Nitrogen patterns were variable but in general nitrogen levels increased in the litter in both experiments over a period of several months. These results are similar to those found in some perennially inundated systems and indicate that litter decomposition dynamics in this temporary lake can be greatly affected by lake hydrology. Year-to-year variations in hydrology may thus have strong impacts on nutrient and energy release within this system, which may affect the organisms within this karst lake and in other areas of the karst ecosystem that are ecologically connected to it.  相似文献   
63.
Wetlands are important providers of ecosystem services and key regulators of climate change. They positively contribute to global warming through their greenhouse gas emissions, and negatively through the accumulation of organic material in histosols, particularly in peatlands. Our understanding of wetlands’ services is currently constrained by limited knowledge on their distribution, extent, volume, interannual flood variability and disturbance levels. We present an expert system approach to estimate wetland and peatland areas, depths and volumes, which relies on three biophysical indices related to wetland and peat formation: (1) long‐term water supply exceeding atmospheric water demand; (2) annually or seasonally water‐logged soils; and (3) a geomorphological position where water is supplied and retained. Tropical and subtropical wetlands estimates reach 4.7 million km2 (Mkm2). In line with current understanding, the American continent is the major contributor (45%), and Brazil, with its Amazonian interfluvial region, contains the largest tropical wetland area (800,720 km2). Our model suggests, however, unprecedented extents and volumes of peatland in the tropics (1.7 Mkm2 and 7,268 (6,076–7,368) km3), which more than threefold current estimates. Unlike current understanding, our estimates suggest that South America and not Asia contributes the most to tropical peatland area and volume (ca. 44% for both) partly related to some yet unaccounted extended deep deposits but mainly to extended but shallow peat in the Amazon Basin. Brazil leads the peatland area and volume contribution. Asia hosts 38% of both tropical peat area and volume with Indonesia as the main regional contributor and still the holder of the deepest and most extended peat areas in the tropics. Africa hosts more peat than previously reported but climatic and topographic contexts leave it as the least peat‐forming continent. Our results suggest large biases in our current understanding of the distribution, area and volumes of tropical peat and their continental contributions.  相似文献   
64.
Palaeoenvironments and former climates are typically inferred from pollen and macrofossil records. This approach is time-consuming and suffers from low taxonomic resolution and biased taxon sampling. Here, we test an alternative DNA-based approach utilizing the P6 loop in the chloroplast trnL (UAA) intron; a short (13–158 bp) and variable region with highly conserved flanking sequences. For taxonomic reference, a whole trnL intron sequence database was constructed from recently collected material of 842 species, representing all widespread and/or ecologically important taxa of the species-poor arctic flora. The P6 loop alone allowed identification of all families, most genera (>75%) and one-third of the species, thus providing much higher taxonomic resolution than pollen records. The suitability of the P6 loop for analysis of samples containing degraded ancient DNA from a mixture of species is demonstrated by high-throughput parallel pyrosequencing of permafrost-preserved DNA and reconstruction of two plant communities from the last glacial period. Our approach opens new possibilities for DNA-based assessment of ancient as well as modern biodiversity of many groups of organisms using environmental samples.  相似文献   
65.
Island biogeography of temporary wetland carabid beetle communities   总被引:4,自引:0,他引:4  
Aim The study tests if island biogeography is applicable to invertebrate communities of habitat islands in the agricultural landscape that are not fragments of formerly larger habitats. Location Thirty temporary wetlands in the agricultural landscape of northeast Germany. Methods The composition and species richness of carabid beetle communities was analysed. Habitat area, isolation, the density of temporary wetlands in the landscape, land‐use intensity and the maximum duration of flooding were recorded as independent variables. Overall species richness and wetland species richness were studied in independent regression analyses. The community composition was analysed by means of a Canonical Correspondence Analysis (CCA). A partial CCA was used to analyse the effect of the distance to the edge of the field after removing impacts of other independent variables. Results The area of the habitats and various measures of isolation (mean distances = 81–240 m) did not influence species richness or wetland species richness. The community composition was mainly determined by the land‐use intensity, habitat area did not have significant effects, and the distance to the edge of the field was the only effective isolation parameter. Short‐winged species were more often affected by the distance to the edge of the field than full‐winged species. Main conclusion There is evidence that the distances between the wetlands do not provide an effective barrier to the species dispersal and, therefore, metapopulation structures including subpopulations of multiple temporary wetlands might counteract local area effects on subpopulations. Short‐winged species, however, might be more affected by isolation than full‐winged species. As carabid beetle community structure in most early successional habitats is similar, these results may be representative of many agricultural landscape habitats. Nature conservancy concepts that aim to increase habitat area and habitat connectivity have successfully been applied to fragmented late‐successional habitats. The present study indicates that such concepts do not necessarily result in higher diversity or larger populations in early successional habitats.  相似文献   
66.
Monitoring and understanding global change requires a detailed focus on upscaling, the process for extrapolating from the site‐specific scale to the smallest scale resolved in regional or global models or earth observing systems. Leaf area index (LAI) is one of the most sensitive determinants of plant production and can vary by an order of magnitude over short distances. The landscape distribution of LAI is generally determined by remote sensing of surface reflectance (e.g. normalized difference vegetation index, NDVI) but the mismatch in scales between ground and satellite measurements complicates LAI upscaling. Here, we describe a series of measurements to quantify the spatial distribution of LAI in a sub‐Arctic landscape and then describe the upscaling process and its associated errors. Working from a fine‐scale harvest LAI–NDVI relationship, we collected NDVI data over a 500 m × 500 m catchment in the Swedish Arctic, at resolutions from 0.2 to 9.0 m in a nested sampling design. NDVI scaled linearly, so that NDVI at any scale was a simple average of multiple NDVI measurements taken at finer scales. The LAI–NDVI relationship was scale invariant from 1.5 to 9.0 m resolution. Thus, a single exponential LAI–NDVI relationship was valid at all these scales, with similar prediction errors. Vegetation patches were of a scale of ~0.5 m and at measurement scales coarser than this, there was a sharp drop in LAI variance. Landsat NDVI data for the study catchment correlated significantly, but poorly, with ground‐based measurements. A variety of techniques were used to construct LAI maps, including interpolation by inverse distance weighting, ordinary Kriging, External Drift Kriging using Landsat data, and direct estimation from a Landsat NDVI–LAI calibration. All methods produced similar LAI estimates and overall errors. However, Kriging approaches also generated maps of LAI estimation error based on semivariograms. The spatial variability of this Arctic landscape was such that local measurements assimilated by Kriging approaches had a limited spatial influence. Over scales >50 m, interpolation error was of similar magnitude to the error in the Landsat NDVI calibration. The characterisation of LAI spatial error in this study is a key step towards developing spatio‐temporal data assimilation systems for assessing C cycling in terrestrial ecosystems by combining models with field and remotely sensed data.  相似文献   
67.
68.
Ross  M.S.  Reed  D.L.  Sah  J.P.  Ruiz  P.L.  Lewin  M.T. 《Wetlands Ecology and Management》2003,11(5):291-303
The hydrologic regime of Shark Slough, the most extensive long hydroperiod marsh in Everglades National Park, is largely controlled by the location, volume, and timing of water delivered to it through several control structures from Water Conservation Areas north of the Park. Where natural or anthropogenic barriers to water flow are present, water management practices in this highly regulated system may result in an uneven distribution of water in the marsh, which may impact regional vegetation patterns. In this paper, we use data from 569 sampling locations along five cross-Slough transects to examine regional vegetation distribution, and to test and describe the association of marsh vegetation with several hydrologic and edaphic parameters. Analysis of vegetation:environment relationships yielded estimates of both mean and variance in soil depth, as well as annual hydroperiod, mean water depth, and 30-day maximum water depth within each cover type during the 1990's. We found that rank abundances of the three major marsh cover types (Tall Sawgrass, Sparse Sawgrass, and Spikerush Marsh) were identical in all portions of Shark Slough, but regional trends in the relative abundance of individual communities were present. Analysis also indicated clear and consistent differences in the hydrologic regime of three marsh cover types, with hydroperiod and water depths increasing in the order Tall Sawgrass < Sparse Sawgrass < Spikerush Marsh. In contrast, soil depth decreased in the same order. Locally, these differences were quite subtle; within a management unit of Shark Slough, mean annual values for the two water depth parameters varied less than 15 cm among types, and hydroperiods varied by 65 days or less. More significantly, regional variation in hydrology equaled or exceeded the variation attributable to cover type within a small area. For instance, estimated hydroperiods for Tall Sawgrass in Northern Shark Slough were longer than for Spikerush Marsh in any of the other regions. Although some of this regional variation may reflect a natural gradient within the Slough, a large proportion is the result of compartmentalization due to current water management practices within the marsh. We conclude that hydroperiod or water depth are the most important influences on vegetation within management units, and attribute larger scale differences in vegetation pattern to the interactions among soil development, hydrology and fire regime in this pivotal portion of Everglades.  相似文献   
69.
香根草和风车草人工湿地对猪场废水氮磷处理效果的研究   总被引:58,自引:5,他引:58  
分别以香根草 (Vetiveriazizanioides )和风车草 (Cyperusalternifolius)为植被 ,按 1.0m× 0 .5m×0 .8m建立人工湿地 ,通过四季测试研究其对猪场废水N、P的净化功能及其随季节、进水浓度及水力停留时间变化的规律 .结果表明 ,两湿地对NH3 N和S PO3 -4 去除率受污水停留时间和污水浓度影响较大 .香根草或风车草人工湿地在春季对NH3 N和S PO3 -4 有明显的去除效果 ;在秋季 ,则对去除废水TN均有效果 ,在去除TP上 ,香根草湿地效果明显 ,风车草湿地效果差 .秋春季人工湿地随水力停留时间 (t)延长 ,TP或S PO3 -4 (Y)的去除遵从指数方程Yt=Y0 ·e-kt规律 .冬季和夏季 ,进水浓度对湿地去除P影响较大 ;在相同停留时间内 ,冬夏季人工湿地随进水浓度变化 ,进出水S PO3 -4 遵从直线方程 y =a +bx规律  相似文献   
70.
Twenty-two bacterial strains that secrete exopolysaccharides (EPS) were isolated from marine samples obtained from the Chukchi Sea in the Arctic Ocean; of these, seven strains were found to be capable of producing cryoprotective EPS. The ArcPo 15 strain was isolated based on its ability to secrete large amounts of EPS, and was identified as Pseudoalteromonas elyakovii based on 16S rDNA analysis. The EPS, P-ArcPo 15, was purified by protease treatment and gel filtration chromatography. The purified EPS (P-ArcPo 15) had a molecular mass of 1.7 × 107 Da, and its infrared spectrum showed absorption bands of hydroxyl and carboxyl groups. The principal sugar components of P-ArcPo 15 were determined to be mannose and galacturonic acid, in the ratio of 3.3:1.0. The cryoprotective properties of P-ArcPo 15 were characterized by an Escherichia coli viability test. In the presence of 0.5% (w/v) EPS, the survival percentage of E. coli cells was as high as 94.19 ± 7.81% over five repeated freeze–thaw cycles. These biochemical characteristics suggest that the EPS P-ArcPo 15 may be useful in the development of cryoprotectants for biotechnological purposes, and we therefore assessed the utility of this novel cryoprotective EPS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号