首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1645篇
  免费   103篇
  国内免费   71篇
  2024年   3篇
  2023年   18篇
  2022年   13篇
  2021年   32篇
  2020年   50篇
  2019年   51篇
  2018年   56篇
  2017年   46篇
  2016年   53篇
  2015年   45篇
  2014年   57篇
  2013年   138篇
  2012年   53篇
  2011年   39篇
  2010年   31篇
  2009年   86篇
  2008年   87篇
  2007年   92篇
  2006年   75篇
  2005年   60篇
  2004年   52篇
  2003年   47篇
  2002年   51篇
  2001年   62篇
  2000年   30篇
  1999年   30篇
  1998年   28篇
  1997年   43篇
  1996年   35篇
  1995年   37篇
  1994年   36篇
  1993年   37篇
  1992年   39篇
  1991年   22篇
  1990年   27篇
  1989年   35篇
  1988年   11篇
  1987年   13篇
  1986年   18篇
  1985年   10篇
  1984年   7篇
  1983年   5篇
  1982年   28篇
  1981年   7篇
  1980年   9篇
  1979年   4篇
  1978年   6篇
  1977年   2篇
  1976年   3篇
排序方式: 共有1819条查询结果,搜索用时 95 毫秒
81.
Arctic organisms are adapted to the strong seasonality of environmental forcing. A small timing mismatch between biological processes and the environment could potentially have significant consequences for the entire food web. Climate warming causes shrinking ice coverage and earlier ice retreat in the Arctic, which is likely to change the timing of primary production. In this study, we test predictions on the interactions among sea ice phenology and production timing of ice algae and pelagic phytoplankton. We do so using the following (1) a synthesis of available satellite observation data; and (2) the application of a coupled ice‐ocean ecosystem model. The data and model results suggest that, over a large portion of the Arctic marginal seas, the timing variability in ice retreat at a specific location has a strong impact on the timing variability in pelagic phytoplankton peaks, but weak or no impact on the timing of ice‐algae peaks in those regions. The model predicts latitudinal and regional differences in the timing of ice algae biomass peak (varying from April to May) and the time lags between ice algae and pelagic phytoplankton peaks (varying from 45 to 90 days). The correlation between the time lag and ice retreat is significant in areas where ice retreat has no significant impact on ice‐algae peak timing, suggesting that changes in pelagic phytoplankton peak timing control the variability in time lags. Phenological variability in primary production is likely to have consequences for higher trophic levels, particularly for the zooplankton grazers, whose main food source is composed of the dually pulsed algae production of the Arctic.  相似文献   
82.
83.
SUMMARY

The soils of Midmar dam catchment and the sediments of the Lions river are shown to have high P-retention properties. Present conditions result in little leaching of PO4 ?4 from the soils and favour a net transport of P from overlying water to the sediments. P levels in the water are likely to remain low even if the loading rate of P were increased substantially. It is postulated however that other factors may induce a release of P from the sediments and adversely affect the load carried by the water.  相似文献   
84.
SUMMARY

Large quantities of suspended sediments are common in many of South Africa's fresh-waters. Temporal and spatial variations in tile amounts of cations adsorbed were recorded. The adsorption appears to be dependent on valency, because greater quantities of the higher valencies are adsorbed. Ca++ dominated the adsorbed cations and Mg the dissolved fraction. Water originating from the Beaufort Series contained high sodium concentrations. Fe++ dominated the adsorbed minor cations. Large quantities of sediments transported by rivers enter impoundments. The adsorbed ions transported in this way are influenced by the type of suspended sediment and form a significant part of the total input of ions.  相似文献   
85.
Large-scale industrial activities can have negative effects on wildlife populations. Some of these effects, however, could be reduced with effective planning prior to development. The Coastal Plain of the Arctic National Wildlife Refuge, in northeastern Alaska, USA, is an important maternal denning area for polar bears (Ursus maritimus). Recent legislation has opened the area for potential oil and gas development. As a result, there is interest in conducting winter seismic surveys across the area that could disturb denning female polar bears and lead to decreased cub survival. We sought to demonstrate how different seismic survey designs, with and without aerial den detection surveys, could affect the level of potential effect on denning polar bears during spring (Feb–Apr). We developed 5 hypothetical seismic survey designs for a portion of the Coastal Plain ranging from no spatial or temporal restrictions on activities to explicit consideration of when and where operations can occur. We evaluated how many dens might be disturbed by seismic surveys and the average distance activity came within simulated polar bear dens. Survey design had a large effect on the estimated number of dens that could be disturbed; the scenario with the highest spatial and temporal specificity reduced the number of dens disturbed by >90% compared to the scenario with no restrictions on when and where activity could occur. The use of an aerial den detection survey prior to seismic activity further reduced the number of dens disturbed by 68% across all scenarios. The scenario with the highest spatial and temporal specificity always had the lowest level of disturbance for all scenarios with and without the aerial survey included. Our study suggests that large reductions in the probability of disturbance can occur through careful planning on the timing and distribution of proposed activities even when surveys are planned in areas with a high density of polar bear dens. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. The Journal of Wildlife Management published by Wiley Periodicals, Inc. on behalf of The Wildlife Society.  相似文献   
86.

Background and Aims

Preservation of cultivar purity creates a particular challenge for plants that are self-incompatible, require insects for cross-pollination, and have easily germinating seeds and vigorously spreading rhizomes. As the fields must be planted with mixed populations, and a balance must be maintained between the cultivars to achieve effective pollination, methods for field monitoring of the relative density of different cultivars must be practical. Furthermore, a DNA-based method is needed for cultivar verification in the collections and outside of the growing season. The aim of this study was to develop both types of methods for Rubus arcticus (arctic bramble).

Methods

Morphological parameters were measured from six cultivars grown on three farms. Observations from the flowers and fruits included: petal and sepal number, flower diameter, arrangement of petals, size of calyx in relation to corolla, fruit weight, yield and soluble sugars. Observations from the leaves included: width and height of middle leaflet, shape of the base of terminal leaflet, shape of terminal leaflet, leaf margin serration and fingertip touch. The applicability of simple sequence repeat (SSR) or microsatellite DNA markers developed for red raspberry was tested on eight arctic bramble cultivars.

Key Results and Conclusions

Morphological and molecular identification methods were developed for R. arcticus. The best morphological characteristics were the length-to-width ratio of the middle leaflet and leaf margin serration. A particular characteristic, fingertip touch, was shown by electron microscopy to be related to the density and quality of the leaf hairs. Red raspberry SSR marker no. 126 proved to be applicable for differentiation of the eight arctic bramble cultivars tested. These identification methods are critical to secure the maintenance and management of R. arcticus. However, the challenges faced and approaches taken are equally applicable to other species with similar biology.  相似文献   
87.
Identifying and explaining bottlenecks in organic carbon mineralization and the persistence of organic matter in marine sediments remain challenging. This study aims to illuminate the process of carbon flow between microorganisms involved in the sedimentary microbial food chain in anoxic, organic-rich sediments of the central Namibian upwelling system, using biogeochemical rate measurements and abundances of Bacteroidetes, Gammaproteobacteria, and sulfate-reducing bacteria at two sampling stations. Sulfate reduction rates decreased by three orders of magnitude in the top 20 cm at one sampling station (280 nmol cm?3 d?1 – 0.1 nmol cm?3 d?1) and by a factor of 7 at the second station (65 nmol cm?3 d?1 – 9.6 nmol cm?3 d?1). However, rates of enzymatic hydrolysis decreased by less than a factor of three at both sampling stations for the polysaccharides laminarin (23 nmol cm?3 d?1– 8 nmol cm?3 d?1 and 22 nmol cm?3 d?1– 10 nmol cm?3 d?1) and pullulan (11 nmol cm?3 d?1– 4 nmol cm?3 d?1 and 8 nmol cm?3 d?1– 6 nmol cm?3 d?1). Increasing imbalance between carbon turnover by hydrolysis and terminal oxidation with depth, the steep decrease in cell specific activity of sulfate reducing bacteria with depth, low concentrations of volatile fatty acids (less than 15 μM), and persistence of dissolved organic carbon, suggest decreasing bioavailability and substrate limitation with depth.  相似文献   
88.
Thermophilic and metal-oxidizing bacteria were identified in shallow hydrothermal vents on the western Mexican coast. The role of these bacteria in biomineralization processes observed in the vents is explained, and the effect of the vents on biodiversity of prokaryotes is discussed. Research was done at two shallow hydrothermal vent sites: Bahía Concepción (BC) in the Baja California Peninsula and Punta Mita (PM), on the central Pacific coast. Temperature at the sediments proximal to the vents was similar, but the redox potentials (0.5 V in BC and ?0.3 V in PM) and pH (6.2 in BC and as low as 4.5 in PM) differed. The composition of the discharged water ranged from nearly seawater to lower-salinity fluids, and the gas phase was mainly CO2 at BC and N2 and CH4 at PM. The study focuses on the biogeochemical processes related to the different species of bacteria present in the studied sites, which are involved in the anaerobic oxidation of methane (AOM), seawater sulfate reduction, and metal oxidation. The detected bacterial lineages represented typical deep vent species, which disproves a previous hypothesis that proposed that different consortia were populating deep and shallow hydrothermal vents. The results obtained here show that the main parameter affecting the bacterial groups present in shallow vents was the redox potential: gamma-, delta-, and epsilon proteobacteria as well as Bacteriodetes are present under the oxidizing conditions of BC, and Thermotogae, Aquificae, and Planctomycetes are present in PM. Sunlight abundance favored the prevalence of halophilic and Chlorofleaxae bacteria in both areas.  相似文献   
89.
Microbial communities in ancient marine sediments composed of clay and silt obtained from the terrestrial subsurface were phylogenetically analyzed based on their 16S rRNA gene sequences. Chloroflexi and Miscellaneous Crenarchaeotic Group were predominant in bacterial and archaeal clone libraries, respectively. Of 44 operational taxonomic units (OTUs) that had close relatives in the database, 30 were close to sequences obtained from marine environments. Some sequences belonged to the candidate groups JS1, ANME-I, and Marine Benthic Group-C, which are typically found in marine sediments. Low chloride concentrations in the sediments suggest that these marine-affiliated sequences may not reflect currently active microbial communities. Our results indicate the existence of long-term preserved DNA or descendants of ancient oceanic microbial components in subsurface muddy sediments in a temperate region, which may reflect indigenous population of paleoenvironments.  相似文献   
90.
This study examines fossil microorganisms found in iron-rich deposits in an extreme acidic environment, the Tinto River in SW Spain. Both electron microscopy (SEM and TEM) and non-destructive in situ microanalytical techniques (EDS, EMP and XPS) were used to determine the role of permineralization and encrustation in preserving microorganisms forming biofilms in the sediments. Unicellular algae were preserved by silica permineralization of their cell walls. Bacterial biofilms were preserved as molds by epicellular deposition of schwertmannite around them. In the case of fungi and filamentous algae, we observed permineralization of cell structures by schwertmannite in the sediments. The extracellular polymeric matrix around the cells was also preserved through permineralization of the fibrillar component. The process of permineralization and deposition of iron-rich precipitates present in the acidic waters of Rio Tinto served to preserve many microfossils in an oxidizing environment, in which organic compounds would not normally be expected to persist. Studies of microbial fossil formation mechanisms in modern extreme environments should focus on defining criteria to identify inorganic traces of microbial life in past environments on Earth or other planets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号