首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1899篇
  免费   253篇
  国内免费   122篇
  2024年   2篇
  2023年   52篇
  2022年   19篇
  2021年   59篇
  2020年   102篇
  2019年   95篇
  2018年   98篇
  2017年   89篇
  2016年   107篇
  2015年   91篇
  2014年   76篇
  2013年   141篇
  2012年   61篇
  2011年   71篇
  2010年   45篇
  2009年   102篇
  2008年   125篇
  2007年   112篇
  2006年   91篇
  2005年   86篇
  2004年   79篇
  2003年   50篇
  2002年   66篇
  2001年   66篇
  2000年   46篇
  1999年   37篇
  1998年   43篇
  1997年   42篇
  1996年   29篇
  1995年   22篇
  1994年   28篇
  1993年   22篇
  1992年   22篇
  1991年   14篇
  1990年   17篇
  1989年   12篇
  1988年   2篇
  1987年   6篇
  1986年   7篇
  1985年   5篇
  1984年   4篇
  1983年   9篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   6篇
  1958年   1篇
排序方式: 共有2274条查询结果,搜索用时 15 毫秒
81.
第六次北极科学考察海洋沉积物可培养细菌的多样性分析   总被引:2,自引:0,他引:2  
【目的】研究北极海洋沉积物可培养细菌的菌种资源多样性。【方法】采用海水Zobell2216E培养基和涂布平板法对第六次北极科学考察获得的海洋沉积物开展细菌分离培养,通过16S rRNA基因系统发育分析了解可培养细菌的多样性。【结果】根据菌落形态特征,从40个站位的北极海洋沉积物样品中共分离并获得16S rRNA基因有效序列的细菌达445株;基于16S rRNA基因的相似性分析与系统发育研究结果表明,分离获得的细菌分属于细菌域的4个门、6个纲、13个目、28个科、49个属、91个种,其中γ-Proteobacteria占大多数;有12株与模式菌株的16S rRNA基因序列相似性小于97%,可能代表了6个潜在的细菌新物种;此次获得的细菌种类组成与以往第五次北极科考获得的相比,在属水平上差异较大。【结论】北极海洋沉积物中存在着丰富的微生物菌种资源,具有很多新型微生物仍未被发现,是亟待开发的微生物资源宝库。  相似文献   
82.
Combined effects of cumulative nutrient inputs and biogeochemical processes that occur in freshwater under anthropogenic eutrophication could lead to myriad shifts in nitrogen (N):phosphorus (P) stoichiometry in global freshwater ecosystems, but this is not yet well‐assessed. Here we evaluated the characteristics of N and P stoichiometries in bodies of freshwater and their herbaceous macrophytes across human‐impact levels, regions and periods. Freshwater and its macrophytes had higher N and P concentrations and lower N : P ratios in heavily than lightly human‐impacted environments, further evidenced by spatiotemporal comparisons across eutrophication gradients. N and P concentrations in freshwater ecosystems were positively correlated and N : P was negatively correlated with population density in China. These results indicate a faster accumulation of P than N in human‐impacted freshwater ecosystems, which could have large effects on the trophic webs and biogeochemical cycles of estuaries and coastal areas by freshwater loadings, and reinforce the importance of rehabilitating these ecosystems.  相似文献   
83.
84.
It is cost-effective protocol to identify a functional species pool for marine bioassessment by removing redundant species from a raw dataset. The feasibility of functional species pool for discriminating water quality status was studied based on a dataset of 120 samples of ciliated protozoa. From the full 60-species dataset of the whole ciliate communities, a 35-species subset was identified as a functional species pool, the species number, abundance and biodiversity indices of which were significantly correlated with those of the full species dataset. The spatial pattern of the subset was significantly related to the changes in nutrients soluble reactive phosphates (SRP), nitrate/nitrite nitrogen (NO3-N/NO2-N) and ammonium nitrogen (NH4-N). Four indices of the taxonomic diversity (Δ), taxonomic distinctness (Δ*), average in taxonomic distinctness (Δ+) and the variation in taxonomic distinctness (Λ+) based on this small species pool were significantly correlated with the changes of nutrients NO3-N and/or (NH4-N). The paired indices Δ+ and Λ+ showed a clear decreasing trend of departure from the expected taxonomic pattern. These findings suggest that the 35-species functional species subset may be used as a feasible functional surrogate of ciliated protozoan assemblages for community-based bioassessment in marine ecosystems.  相似文献   
85.
Drought is frequently recorded as a result of climate warming and elevated concentration of greenhouse gases, which affect the carbon and water cycles in terrestrial ecosystems, particularly in arid and semi-arid regions. To identify the drought in grassland ecosystems and to determine how such drought affects grassland ecosystems in terms of carbon and water cycles across the globe, this study evaluated the drought conditions of global grassland ecosystems from 2000 to 2011 on the basis of the remotely sensed Drought Severity Index (DSI) data. The temporal dynamics of grassland carbon use efficiency (CUE) and water use efficiency (WUE), as well as their correlations with DSI, were also investigated at the global scale. Results showed that 57.04% of grassland ecosystems experienced a dry trend over this period. In general, most grassland ecosystems in the northern hemisphere (N.H.) were in near normal condition, whereas those in the southern hemisphere (S.H.) experienced a clear drying and wetting trend, with the year 2005 regarded as the turning point. Grassland CUE increased continually despite the varied drought conditions over this period. By contrast, WUE increased in the closed shrublands and woody savannas but decreased in all the other grassland types. The drought conditions affected the carbon and water use mainly by influencing the primary production and evapotranspiration of grass through photosynthesis and transpiration process. The CUE and WUE of savannas was most sensitive to droughts among all the grassland types. The areas of grassland DSI that showed significant correlations with CUE and WUE were 52.92% and 22.11% of the total grassland areas, respectively. Overall, droughts sufficiently explained the dynamics of grassland CUE, especially in the S.H. In comparison with grassland CUE, the grassland WUE was less sensitive to drought conditions at the global scale.  相似文献   
86.
The dynamics of savanna ecosystems depends on the interplay between multiple factors such as grazing, browsing, fires, rainfall regime and interactions between grass and woody vegetation. In most modelling applications this interplay may not be fully understood because some of these drivers enter the models as dynamically independent factors. In this paper we consider such factors as dynamic variables. To analyze their interplay we focus on the structure of the interactive network of variables and exploit the properties of signed digraphs using the algorithm of Loop Analysis. Qualitative signed digraphs for the savanna ecosystem are developed and their predictions used to interpret patterns of abundance observed in case studies selected from the literature. The outcomes of this exercise unveil that: 1) the structure of the interactions is appropriate locus for the explanation of patterns observed in savannas; 2) signed digraph can help disentangling causative mechanisms by linking correlation patterns, source of change and network structure. This study highlights that central to the understanding of savanna dynamics is our ability to diagram the important relationships and understand how they interrelate with sources of variations to cause ecosystem change.  相似文献   
87.
Community-based assessment of protozoa is usually performed at a taxon-dependent resolution. As an inherent ‘taxon-free’ trait, however, body-size spectrum has proved to be a highly informative indicator to summarize the functional structure of a community in both community research and monitoring programs in aquatic ecosystems. To demonstrate the relationships between the taxon-free resolution of protozoan communities and water conditions, the body-size spectra of biofilm-dwelling protozoa and their seasonal shift and environmental drivers were explored based on an annual dataset collected monthly from coastal waters of the Yellow Sea, northern China. Body sizes were calculated in equivalent spherical diameter (ESD). Among a total of 8 body-size ranks, S2 (19–27 μm), S3 (28–36 μm), S4 (37–50 μm) and S5 (53–71 μm) were the top four levels in frequency of occurrence, while rank S1 (13–17 μm), S2 and S4 were the dominant levels in abundance. These dominants showed a clear seasonal succession: S2/S4 (spring)  S2/S4 (summer)  S4 (autumn)  S2 (winter) in frequency of occurrence; S1 (spring)  S4 (summer)  S2 (autumn)  S1 (winter) in abundance. Bootstrapped average analysis showed a clear seasonal shift in body-size spectra of the protozoa during a 1-year cycle, and the best-matching analysis demonstrated that the temporal variations in frequency of occurrence and abundance were significantly correlated with water temperature, pH, dissolved oxygen (DO), alone or in combination with chemical oxygen demand (COD) and nutrients. Thus, the body-size spectra of biofilm-dwelling protozoa were seasonally shaped and might be used as a time and cost efficient bioindicator of water quality in marine ecosystems.  相似文献   
88.
Sea ice is a large and diverse ecosystem contributing significantly to primary production in ice-covered regions. In the Arctic Ocean, sea ice consists of mixed multi-year ice (MYI), often several metres thick, and thinner first-year ice (FYI). Current global warming is most severe in Arctic regions; as a consequence, summer sea ice cover is decreasing and MYI is disappearing at an alarming rate. Despite its apparent hostility, sea ice is inhabited by a diverse microbial community of bacteria and protists, many of which are photosynthetic. Here we present an assessment of eukaryotic biodiversity in MYI and FYI from the central Arctic Ocean using high-throughput 454 sequencing of 18S rRNA and rDNA amplicons. We compared the rDNA-based ‘total’ biodiversity with the ‘active’ biodiversity from rRNA amplicons and found differences between them including an over-representation of Ciliophora, Bicosoecida and Bacillariophyceae operational taxonomic units (OTUs) in the active part of the community. Differences between the two libraries are more pronounced at the lower taxonomic level: certain genera, such as Melosira, are more abundant in the rRNA library, indicating activity of these genera. Furthermore, we found that one FYI station showed a higher activity of potential grazers which was probably due to the advanced stage of melt evident by higher ice temperatures and highly porous ice compared with the other stations.  相似文献   
89.
Divergent natural selection regimes can contribute to adaptive population divergence, but can be sensitive to human‐mediated environmental change. Nutrient loading of aquatic ecosystems, for example, might modify selection pressures by altering the abundance and distribution of resources and the prevalence and infectivity of parasites. Here, we used a mesocosm experiment to test for interactive effects of nutrient loading and parasitism on host condition and feeding ecology. Specifically, we investigated whether the common fish parasite Gyrodactylus sp. differentially affected recently diverged lake and stream ecotypes of three‐spined stickleback (Gasterosteus aculeatus). We found that the stream ecotype had a higher resistance to Gyrodactylus sp. infections than the lake ecotype, and that both ecotypes experienced a cost of parasitism, indicated by negative relationships between parasite load and both stomach fullness and body condition. Overall, our results suggest that in the early stages of adaptive population divergence of hosts, parasites can affect host resistance, body condition and diet.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号