首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1905篇
  免费   253篇
  国内免费   126篇
  2024年   6篇
  2023年   52篇
  2022年   25篇
  2021年   59篇
  2020年   102篇
  2019年   95篇
  2018年   98篇
  2017年   89篇
  2016年   107篇
  2015年   91篇
  2014年   76篇
  2013年   141篇
  2012年   61篇
  2011年   71篇
  2010年   45篇
  2009年   102篇
  2008年   125篇
  2007年   112篇
  2006年   91篇
  2005年   86篇
  2004年   79篇
  2003年   50篇
  2002年   66篇
  2001年   66篇
  2000年   46篇
  1999年   37篇
  1998年   43篇
  1997年   42篇
  1996年   29篇
  1995年   22篇
  1994年   28篇
  1993年   22篇
  1992年   22篇
  1991年   14篇
  1990年   17篇
  1989年   12篇
  1988年   2篇
  1987年   6篇
  1986年   7篇
  1985年   5篇
  1984年   4篇
  1983年   9篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   6篇
  1958年   1篇
排序方式: 共有2284条查询结果,搜索用时 15 毫秒
41.
Climate change is most rapid in the Arctic, posing both benefits and challenges for migratory herbivores. However, population‐dynamic responses to climate change are generally difficult to predict, due to concurrent changes in other trophic levels. Migratory species are also exposed to contrasting climate trends and density regimes over the annual cycle. Thus, determining how climate change impacts their population dynamics requires an understanding of how weather directly or indirectly (through trophic interactions and carryover effects) affects reproduction and survival across migratory stages, while accounting for density dependence. Here, we analyse the overall implications of climate change for a local non‐hunted population of high‐arctic Svalbard barnacle geese, Branta leucopsis, using 28 years of individual‐based data. By identifying the main drivers of reproductive stages (egg production, hatching and fledging) and age‐specific survival rates, we quantify their impact on population growth. Recent climate change in Svalbard enhanced egg production and hatching success through positive effects of advanced spring onset (snow melt) and warmer summers (i.e. earlier vegetation green‐up) respectively. Contrastingly, there was a strong temporal decline in fledging probability due to increased local abundance of the Arctic fox, the main predator. While weather during the non‐breeding season influenced geese through a positive effect of temperature (UK wintering grounds) on adult survival and a positive carryover effect of rainfall (spring stopover site in Norway) on egg production, these covariates showed no temporal trends. However, density‐dependent effects occurred throughout the annual cycle, and the steadily increasing total flyway population size caused negative trends in overwinter survival and carryover effects on egg production. The combination of density‐dependent processes and direct and indirect climate change effects across life history stages appeared to stabilize local population size. Our study emphasizes the need for holistic approaches when studying population‐dynamic responses to global change in migratory species.  相似文献   
42.
43.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.  相似文献   
44.
The colonization features of periphytic protozoa have proved to be a useful tool for indicating water quality status in aquatic ecosystems. In order to reveal the seasonal variations in colonization dynamics of the protozoa, a 1-year baseline survey was carried out in coastal waters of the Yellow Sea, northern China. Using glass slides as artificial substrates, a total of 240 slides were collected at a depth of 1 m in four seasons after colonization periods of 3, 7, 10, 14, 21, and 28 days. A total of 122 ciliate species were identified with 21 dominant species. The colonization dynamics of the protozoa were well fitted to the MacArthur-Wilson and logistic models in all four seasons (P < 0.05). However, the equilibrium species numbers (Seq), colonization rates (G), and the time to 90% Seq (T90%) represented a clear seasonal variability: (1) more or less similar levels in spring and autumn (Seq = 29/23; G = 0.301/0.296; T90%=7.650/7.779); (2) with a significant difference in summer and winter (Seq = 32/121; G = 0.708/0.005; T90% = 3.252/479.705). Multivariate approaches demonstrated that the exposure time for the species composition and community structure of the protozoa to an equilibrium period were 10–14 days in spring and autumn, but less and more time periods were needed in summer and winter, respectively. Based on the results, we suggest that the colonization dynamics of periphytic protozoa were different within four seasons, and an optimal sampling strategy for monitoring surveys should be modified during different seasons in marine ecosystems.  相似文献   
45.
Aerobic anoxygenic phototrophic (AAP) bacteria are a phylogenetically diverse and ubiquitous group of prokaryotes that use organic matter but can harvest light using bacteriochlorophyll a. Although the factors regulating AAP ecology have long been investigated through field surveys, the few available experimental studies have considered AAPs as a group, thus disregarding the potential differential responses between taxonomically distinct AAP assemblages. Here, we used sequencing of the pufM gene to describe the diversity of AAPs in 10 environmentally distinct temperate lakes, and to investigate the taxonomic responses of AAP communities in these lakes when subjected to similar experimental manipulations of light and predator removal. The studied communities were clearly dominated by Limnohabitans AAP but presented a clear taxonomic segregation between lakes presumably driven by local conditions, which was maintained after experimental manipulations. Predation reduction (but not light exposure) caused significant compositional shifts across most assemblages, but the magnitude of these changes could not be clearly related to changes in bulk AAP abundances or taxonomic richness of AAP assemblages during experiments. Only a few operational taxonomic units, which differed taxonomically between lakes, were found to respond positively during experimental treatments. Our results highlight that different freshwater AAP communities respond differently to similar control mechanisms, highlighting that in‐depth knowledge on AAP diversity is essential to understand the ecology and potential role of these photoheterotrophs.  相似文献   
46.
Phenotypic plasticity plays a critical role in adaptation to novel environments. Behavioural plasticity enables more rapid responses to unfamiliar conditions than evolution by natural selection. Urban ecosystems are one such novel environment in which behavioural plasticity has been documented. However, whether such plasticity is adaptive, and if plasticity is convergent among urban populations, is poorly understood. We studied the nesting biology of an ‘urban-adapter’ species, the dark-eyed junco (Junco hyemalis), to understand the role of plasticity in adapting to city life. We examined (i) whether novel nesting behaviours are adaptive, (ii) whether pairs modify nest characteristics in response to prior outcomes, and (iii) whether two urban populations exhibit similar nesting behaviour. We monitored 170 junco nests in urban Los Angeles and compared our results with prior research on 579 nests from urban San Diego. We found that nests placed in ecologically novel locations (off-ground and on artificial surfaces) increased fitness, and that pairs practiced informed re-nesting in site selection. The Los Angeles population more frequently nested off-ground than the San Diego population and exhibited a higher success rate. Our findings suggest that plasticity facilitates adaptation to urban environments, and that the drivers behind novel nesting behaviours are complex and multifaceted.  相似文献   
47.
According to classic theory, species'' population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the ‘alternative prey hypothesis’ (APH), the densities of ground-nesting birds and rodents are positively associated due to predator–prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007–2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that the link between ptarmigan abundance and rodent dynamics was strongest in colder regions. Our study highlights how species interactions play an important role in population dynamics of species at high latitudes and suggests that they can become even more important in the most climatically harsh regions.  相似文献   
48.
Predicting the consequences of environmental changes, including human‐mediated climate change on species, requires that we quantify range‐wide patterns of genetic diversity and identify the ecological, environmental, and historical factors that have contributed to it. Here, we generate baseline data on polar bear population structure across most Canadian subpopulations (n = 358) using 13,488 genome‐wide single nucleotide polymorphisms (SNPs) identified with double‐digest restriction site‐associated DNA sequencing (ddRAD). Our ddRAD dataset showed three genetic clusters in the sampled Canadian range, congruent with previous studies based on microsatellites across the same regions; however, due to a lack of sampling in Norwegian Bay, we were unable to confirm the existence of a unique cluster in that subpopulation. These data on the genetic structure of polar bears using SNPs provide a detailed baseline against which future shifts in population structure can be assessed, and opportunities to develop new noninvasive tools for monitoring polar bears across their range.  相似文献   
49.
Continued Arctic warming and sea‐ice loss will have important implications for the conservation of ringed seals, a highly ice‐dependent species. A better understanding of their spatial ecology will help characterize emerging ecological trends and inform management decisions. We deployed satellite transmitters on ringed seals in the summers of 2011, 2014, and 2016 near Utqia?vik (formerly Barrow), Alaska, to monitor their movements, diving, and haul‐out behavior. We present analyses of tracking and dive data provided by 17 seals that were tracked until at least January of the following year. Seals mostly ranged north of Utqia?vik in the Beaufort and Chukchi Seas during summer before moving into the southern Chukchi and Bering Seas during winter. In all seasons, ringed seals occupied a diversity of habitats and spatial distributions, from near shore and localized, to far offshore and wide‐ranging in drifting sea ice. Continental shelf waters were occupied for >96% of tracking days, during which repetitive diving (suggestive of foraging) primarily to the seafloor was the most frequent activity. From mid‐summer to early fall, 12 seals made ~1‐week forays off‐shelf to the deep Arctic Basin, most reaching the retreating pack‐ice, where they spent most of their time hauled out. Diel activity patterns suggested greater allocation of foraging efforts to midday hours. Haul‐out patterns were complementary, occurring mostly at night until April‐May when midday hours were preferred. Ringed seals captured in 2011—concurrent with an unusual mortality event that affected all ice‐seal species—differed morphologically and behaviorally from seals captured in other years. Speculations about the physiology of molting and its role in energetics, habitat use, and behavior are discussed; along with possible evidence of purported ringed seal ecotypes.  相似文献   
50.
Saline lakes, among the most seriously endangered ecosystems, are threatened due to climate change and human activities. One valuable feature of these environments is that they constitute areas of high biodiversity. Ecologists are, therefore, under great pressure to improve their understanding of the effects of natural and anthropogenic disturbances on the biodiversity of saline lakes. In this study, a total of 257 samples from 32 soda pans in Central Europe between 2006 and 2015 were examined. The effects of environmental variables and of geographical and limnoecological factors on functional diversity were analyzed. Furthermore, the explanatory power of the trait‐based approach was assessed, and the applicability of the indices for biomonitoring purposes was determined. It was found that low habitat heterogeneity and harsh environments lead to the selection of a small number of suitable traits, and consequently, to a naturally low level of functional diversity. Anthropogenic activities enhance diversity at functional level due to the shift toward freshwater characteristics. On the regional scale, the effects of the region and status (natural, degraded, reconstructed) on diatom functional diversity were significant and more pronounced than that of the environmental and other limnoecological factors. The degree of variance found in functional diversity ascribed to environmental variables is five times greater in the case of the application of a trait‐based approach, than when a taxonomic one is employed in the literature. Each of the tested functional diversity indices was sensitive to the most important environmental variables. Furthermore, these were type‐specific and proved to be more complex indicators than taxonomic metrics. It is possible to suggest four functional diversity indices (FGR, FRic, FDis, and FDiv) which emphasize their independence from substrate and seasonal variations for ecological status assessment and conservation planning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号