首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1372篇
  免费   60篇
  国内免费   138篇
  2023年   13篇
  2022年   11篇
  2021年   39篇
  2020年   25篇
  2019年   35篇
  2018年   27篇
  2017年   19篇
  2016年   35篇
  2015年   27篇
  2014年   39篇
  2013年   50篇
  2012年   30篇
  2011年   35篇
  2010年   28篇
  2009年   76篇
  2008年   69篇
  2007年   93篇
  2006年   90篇
  2005年   92篇
  2004年   70篇
  2003年   49篇
  2002年   48篇
  2001年   62篇
  2000年   63篇
  1999年   50篇
  1998年   46篇
  1997年   35篇
  1996年   32篇
  1995年   32篇
  1994年   37篇
  1993年   26篇
  1992年   17篇
  1991年   26篇
  1990年   23篇
  1989年   26篇
  1988年   25篇
  1987年   17篇
  1986年   15篇
  1985年   14篇
  1984年   16篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1570条查询结果,搜索用时 93 毫秒
31.
32.
In order to study the influence of Arbuscular Mycorrhiza (AM) on the development of root rot infection, tomato plants were raised with or withoutGlomus mosseae and/orPhytophthora nicotianae var.parasitica in a sand culture system. All plants were fed with a nutrient solution containing one of two phosphorus (P) levels, 32µM (I P) or 96µM (II P), to test the consequence of enhanced P nutrition by the AM fungus on disease dynamics. Mycorrhizal plants had a similar development to that of control plants. Treatment withPhytophthora nicotianae var.parasitica resulted in a visible reduction in plant weight and in a widespread root necrosis in plants without mycorrhiza. The presence of the AM fungus decreased both weight reduction and root necrosis. The percentage reduction of adventitious root necrosis and of necrotic root apices ranged between 63 and 89% The enhancement of P nutrition increased plant development, but did not appreciably decrease disease spread. In our system, mycorrhiza increased plant resistance toP. nicotianae var.parasitica infection. Although a contribution of P nutrition by mycorrhiza cannot be excluded, other mechanisms appear to play a crucial role.  相似文献   
33.
34.
35.
Plant growth and phosphorus (P) uptake of two selections of rye (Secale cereale L.) differing in length of root hairs, in response to mycorrhizal infection were investigated. Rye plants with short root hairs (SRH) had a greater length of root infected by Glomus intraradices (up to 32 m pot–1) than those with long root hairs (LRH) (up to 10 m pot–1). Application of P decreased the percentage of root length infected in both selections. In low-P soil, mycorrhizal infection increased shoot and root P concentration, especially in LRH plants. Generally, LRH had higher shoot dry weight than SRH plants. P uptake was increased both by LRH and by mycorrhizal infection. Differences in specific P uptake and P utilization efficiency between SRH and LRH plants were observed in non-mycorrhizal plants. With low P supply, P utilization efficiency (dry matter yield per unit of P taken up) of LRH plants increased with time. However, mycorrhizal infection reduced P utilization efficiency, particularly of SRH plants. SRH plants, which were agronomically less efficient (i.e. low dry matter yield at low P supply) were more responsive to either mycorrhizal infection or P addition than the LRH plants. No interaction was observed between mycorrhizal infection and root hair length.  相似文献   
36.
The effects of soil P amendments and time of application on the formation of external mycelium by different arbuscular mycorrhizal (AM) fungi were studied. In the first experiment the external mycelium produced in the soil by the AM fungus Glomus etunicatum Beck. and Gerd., during the early stages of root colonization (7 and 14 days after inoculation), was quantified by the soil-agar film technique. A Brazilian Oxisol was used with three different phosphate levels, varying from deficient to supra-optimal for the plant. Significant differences were observed in the phosphate and inoculation treatments for plant dry weight, P content in the tissue, root length and root colonization, at fourteen days after planting. At 7 days, mycelium growth, root colonization and their relationship were reduced at supra-optimal P concentrations. Applications of P one week after planting reduced mycelium growth and root colonization more than when applied to the soil before planting. In a second experiment the arbuscular mycorrhizal (AM) fungi, Scutellospora heterogama (Nicol. and Gerd.) Walker and Sanders and E3 were tested and compared with Glomus etunicatum. For the species studied, the length of external hyphae per unit of colonized root length was affected by small P additions but no further significant differences were observed at high P levels. The three AM endophytes showed marked differences in their response to P in the soil: Scutellospora heterogama, although producing external mycelium more profusely than the Glomus spp., showed a higher sensitivity to soil P supply.  相似文献   
37.
In the years 1985–1989, the occurrence of arbuscular fungi and mycorrhizae on the Hel Peninsula (Poland) was investigated with the help of 45 soil and root samples collected under 20 plant species of eight families. Except for Zea mays, the other plant species were from uncultivated sites. All soil samples contained spores of arbuscular fungi, of which about 45% were of the genus Glomus. Acaulospora spp. preferred members of the Cupressaceae. Spores of Gigaspora occurred rarely and only in two plant families. Glomus spp. were most frequently associated with plants of the Rosaceae, and species of Scutellospora were found at markedly higher frequencies among roots of plants of the Gramineae and Cupressaceae. A total of 29 spore-forming species and Glomus tenue (a fungus recognizable by its distinctive infections) were found. The most frequently recovered fungus, Glomus tenue, was present in roots of 56.8% of examined plants. Of the spore-forming fungi, the most frequently isolated spores were those of Scutellospora dipurpurascens, then Glomus constrictum, Acaulospora 61, and Glomus microcarpum. The overall spore density in examined samples averaged 99.8 in 100 g dry soil in the range 1 to 547, and was highest in a sample taken from around roots of Festuca arundinacea. The dominant fungi forming spores in sampled soils were Glomus constrictum, Glomus microcarpum, and Scutellospora dipurpurascens. The average species density was 3.9 in 100 g dry soil in the range 1 to 10, and was highest in Corynephorus canescens, Rosa canina, and Thuja occidentalis. Levels of colonization by arbuscular fungi ranged from 0.0 to94.0% (mean 23.3%) of the root length and were highest in Festuca arundinaceae and Zea mays.  相似文献   
38.
39.
40.
Pisum sativum L. myc mutants which fail to form arbuscular mycorrhiza have recently been identified amongst nod mutants (Duc et al., 1989, Plant Sci. 60, 215–222). The reason for this resistance to symbiotic fungi has been investigated in the case of a locus a mutant (P2) inoculated with Glomus mosseae (Nicol. and Gerd.) Gerd, and Trappe. The fungal symbiont formed viable appressoria in contact with the root surface but its development was stopped at the root epidermis. Abundant material was deposited on the inner face of root cell walls adjacent to the appressoria in the P2 mutant, but not in the wild-genotype parent cultivar (Frisson) forming a symbiotic mycorrhizal infection. Fluorescence, histochemical, cytochemical and immunocytological approaches were used to characterize the paramural deposits in epidermal and hypodermal cells of the mutant. Strong fluorescence under blue light indicated the accumulation of phenolic compounds although polymers like lignin or suberin were not localized. Proteins and glycoproteins were homogeneously distributed within the paramural deposits. In the latter, the periodic acid-thiocarbohydrazide-silver proteinate (PATAg) reaction for 1,4-polysaccharide detection showed a heterogeneous composition with electron-dense points surrounded by non-reactive material, but cytological tests for cellulose and pectin gave weak responses as compared to epidermal and hypodermal walls of the wild genotype. -1,3-Glucans indicative of callose were detected by in-situ immunolocalization in the paramural deposits below appressoria on mutant roots, but not in walls of the wild genotype. Thus, appressorium formation by G. mosseae on roots of the locus a P. sativum mutant elicits wall modifications usually associated with activation of defence responses to pathogens. It is proposed that this locus must be involved in a key event in symbiotic infection processes in P. sativum, and the possible role of complex regulatory interactions between symbiosis and defence genes in endomycorrhiza development is discussed.Abbreviations DAPI 4,6-diamino-2-phenylindole - FDA fluo-rescein diacetate - PATAg periodic acid-thiocarbohydrazide-silver proteinate The authors are grateful to C. Arnould for technical assistance, K. Niehaus for the purified Sirofluor, K. Roberts for the AFRC JIM5 antibody and J. Lherminier (INRA, Dijon, France), for useful discussion. This collaborative research programme was financially supported by MRT, INRA, EPR-Bourgogne (grant to A.G., Contrat de Plan project 3060A), EEC COST ACTION 8.10 (Endomycorrhizas) and the National Research Council of Italy, Special Project RAISA, Sub-project N.2, Paper N. 801  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号