首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   277篇
  免费   8篇
  国内免费   8篇
  2022年   1篇
  2021年   5篇
  2020年   8篇
  2019年   3篇
  2018年   2篇
  2017年   11篇
  2016年   7篇
  2015年   3篇
  2014年   13篇
  2013年   14篇
  2012年   4篇
  2011年   12篇
  2010年   11篇
  2009年   17篇
  2008年   9篇
  2007年   14篇
  2006年   19篇
  2005年   8篇
  2004年   31篇
  2003年   13篇
  2002年   8篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   23篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1990年   3篇
  1988年   2篇
  1986年   2篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   3篇
  1977年   1篇
  1976年   1篇
排序方式: 共有293条查询结果,搜索用时 31 毫秒
121.
β‐Phycoerythrin is a color protein with several applications, from food coloring to molecular labeling. Depending on the application, different purity is required, affecting production cost and price. Different production and purification strategies for B‐phycoerythrin have been developed, the most studied are based on the production using Porphyridium cruentum and purified using chromatographic techniques or aqueous two‐phase systems. The use of the latter can result in a less expensive and intensive recovery of the protein, but there is lack of a proper economic analysis to study the effect of using aqueous two‐phase systems in a scaled‐up process. This study analyzed the production of B‐Phycoerythrin using real data obtained during the scale‐up of a bioprocess using specialized software (BioSolve, Biopharm Services, UK). First, a sensitivity analysis was performed to identify critical parameters for the production cost, then a Monte Carlo analysis to emulate real processes by adding uncertainty to the identified parameters. Next, the bioprocess was analyzed to determine its financial attractiveness and possible optimization strategies were tested and discussed. Results show that aqueous two‐phase systems retain their advantages of low cost and intensive recovery (54.56%); the costs of production per gram calculated (before titer optimization: US$15,709 and after optimization: US$2,374) allowed to obtain profit (in the range of US$millions in a 10‐year period) for a potential company taking this production method by comparing the production cost against commercial prices. The bioprocess analyzed is a promising and profitable method for the generation of a highly purified B‐phycoerythrin. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1472–1479, 2016  相似文献   
122.
Acidic metabolites of a number of biogenic amines have been identified and quantified by reaction with either acetic or propionic anhydride in the aqueous phase followed by extraction into ethyl acetate, esterification of carboxyl groups with ditrifluoromethylbenzyl bromide (DTFMBzBr), and then conversion of the remaining free hydroxyl groups to acetates. Subsequent analysis of these derivatives revealed that most (greater than 60%) of the ion current was carried by the ion resulting from the loss of DTFMBz from the molecular ion. This made the method highly specific and practical--limits of detection were established at approximately 200 pg with a potential limit of detection below the picogram level. This method establishes unequivocally that the metabolites of tyramine, dopamine, and adrenaline/noradrenaline (4-hydroxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid, and dihydroxymandelic acid, respectively) are present in bovine retina and in vitreous and aqueous humour. In addition, high concentrations of the dopamine metabolite homovanillic acid were found in retina and vitreous, but not in aqueous humour. p-Hydroxymandelic acid, the acidic metabolite of p-octopamine/p-synephrine, was identified in vitreous and in aqueous humour.  相似文献   
123.
Hairy roots of Tagetes patula have been grown in aqueous two-phase systems. After selecting suitable polymers from single-phase experiments (in which salt phases were unable to support growth in the desired concentrations) several two-phase systems were tested for their influence on cell growth and thiophene production. Cell growth occurred in all aqueous two-phase systems, but the highest growth rate was achieved in normal medium. There was no difference in thiophene production between medium and aqueous two-phase systems. The partition of thiophenes favoured slightly the more hydrophobic top phase in most cases, while the cells were confined to the bottom phase. One aqueous two-phase system (15% polyethyleneglycol 10,000 and 15% Reppal PES 200) was tested in a stirred tank reactor with normal medium as a control. The growth rate in medium was higher than in the aqueous two-phase system, while the thiophene production per unit cell weight was in the same range for both systems. The excretion of thiophenes in the reactor with the aqueous two-phase system was about ten times as high as in the control reactor. The amount excreted was however still not more than 3% of the total production.  相似文献   
124.
Several beneficial effects of the electromagnetic information transfer through aqueous system (EMITTAS) procedure have previously been reported in vitro. The clinical potential of this procedure has also started to be evaluated. Information flow in biological systems can be investigated through chemical and molecular approaches or by a biophysical approach focused on endogenous electrodynamic activities. Electromagnetic signals are endogenously generated at different levels of the biological organization and, likely, play an active role in synchronizing internal cell function or local/systemic adaptive response. Consequently, each adaptive response can be described by its specific electromagnetic pattern and, therefore, correlates with a unique and specific electromagnetic signature. A biophysical procedure synchronously integrating the EMITTAS procedure has already been applied for the treatment of articular pain, low-back pain, neck pain and mobility, fluctuating asymmetry, early-stage chronic kidney disease, refractory gynecological infections, minor anxiety and depression disorders. This clinical strategy involves a single treatment, since the EMITTAS procedure allows the patient to continue his/her own personal treatment at home by means of self-administration of the recorded aqueous system. A significant and long-lasting improvement has been reported, showing a potential beneficial use of this biophysical procedure in the management of common illnesses in an efficient, effective and personalized way. Data from recent studies suggest that aqueous systems may play a key role in providing the basis for recording, storing, transferring and retrieving clinically effective quanta of biological information. These features likely enable to trigger local and systemic self-regulation and self-regeneration potential of the organism.  相似文献   
125.
In recent years, the environmental and human health impacts of mercury contamination have driven the search for alternative, eco-efficient techniques different from the traditional physicochemical methods for treating this metal. One of these alternative processes is bioremediation. A comprehensive analysis of the different variables that can affect this process is presented. It focuses on determining the effectiveness of different techniques of bioremediation, with a specific consideration of three variables: the removal percentage, time needed for bioremediation and initial concentration of mercury to be treated in an aqueous medium.  相似文献   
126.
This work presents an investigation on the conformational preferences of α,α-trehalose in gas phase and aqueous solution. Eighty-one systematically selected structures were studied at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) level, giving rise to 40 unique conformers. The 19 lower energy structures and some selected other were further re-optimized at the B3LYP/6-311++G(d,p) level. The main factors accounting for the conformer’s stability were pointed out and discussed. NBO and QTAIM analyses were performed in some selected conformers in order to address the anomeric and exo-anomeric effects as well as intramolecular hydrogen bonding. The effect of solvent water on the relative stability of the conformers was accounted for by applying the conductor-like polarizable continuum model, CPCM.  相似文献   
127.
Solvent extraction, utilizing an oil-water mixture (e.g, chloroform-water) and a suitable complexant, is a proven technology for the selective removal and recovery of metal ions from aqueous solutions. Aqueous biphasic systems (ABS), formed by mixing certain inorganic salts and water-soluble polymers, or by mixing two dissimilar water-soluble polymers, have been studied for more than 40 years for the gentle, non-denaturing separation of fragile biomolecules, yet ABS have been virtually ignored as a possible extraction technology for metal ions. In this report we review our metal ion partitioning work and discuss the three major types of partitioning: (1) those rare instances that the metal ion species present in a given solution partitions to the PEG-rich phase without an extractant; (2) the use of halide salts which produce a metal anion complex that partitions to the PEG-rich phase; and (3) the use of a water-soluble extractant which distributes to the PEG-rich phase. In addition, we correlate the partitioning behavior we observed with available thermodynamic data for metal ions and their complexes.  相似文献   
128.
An aqueous two-phase system, consisting of poly(ethylene glycol) (PEG) and dextran, was employed to separate polymerase chain reaction (PCR)-inhibitory substances from bacterial cells. The PCR inhibition of four soft cheeses was examined and three of them were found to be strongly PCR-inhibitory. Extraction of the PCR-inhibitory soft cheeses inoculated with Listeria monocytogenes in an aqueous two-phase system containing 8% (w/w) PEG 400 and 8% (w/w) dextran 500, was found to lower the PCR detection level of L. monocytogenes by more than four orders of magnitude in two of the cheeses compared to the case where no such sample pretreatment was performed. Depending on the type of cheese used, the PCR-inhibitory factors were found to be enriched in either the top or botton phase in the aqueous two-phase system. These results show that different soft cheeses contain different types and amounts of PCR-inhibitory substances.  相似文献   
129.
The possibility of creating a biorefinery using inexpensive biomass has attracted a great deal of attention, which is mainly focused on the improvement of strains and fermentation, whereas few resources have been spent on downstream processing. Bio‐based chemical downstream processing can become a bottleneck in industrial production because so many impurities are introduced into the fermentation broth. This review introduces a technique referred to as salting‐out extraction, which is based on the partition difference between chemicals in two phases consisting of salts and polymers or hydrophilic solvents, hydrophobic solvents, and amphipathic chemicals. The effects of solvents and salts on the formation of two phases were discussed, as was the use of this method to recover bio‐based chemicals. This review focused on the separation of hydrophilic chemicals (1,3‐propanediol, 2,3‐butanediol, acetoin, and lactic acid) from fermentation broths. Diols could be recovered at a high yield from fermentation broths without pretreatment especially with a hydrophilic solvent‐based system, whereas the recovery of organic acids was slightly lower. Most of the impurities (cells and proteins) were removed during the same step. Extractive fermentations were also used for polymer‐based aqueous two‐phase systems.  相似文献   
130.
Efforts to delineate the interactions of neurotoxic Al(III) with low molecular mass substrates relevant to neurodegenerative processes, led to the investigation of the pH-specific synthetic chemistry of the binary Al(III)-[N-(phosphonomethyl) iminodiacetic acid] (Al-NTAP), Al(III)-[nitrilo-tris(methylene-phosphonic acid)] (Al-NTA3P), and Al(III)-[1-hydroxy ethylidene-1,1-diphosphonic acid] (Al-HEDP) systems, in correlation with solution speciation studies. Reaction of Al(NO3)3·9H2O with NTAP at pH 7.0 and 4.0 afforded the new species (CH6N3)4[Al2(C5H6NPO7)2(OH)2]·8H2O (1) and (NH4)2[Al2(C5H6NPO7)2(H2O)2]·4H2O (2), while reaction of Al(NO3)3·9H2O with NTA3P led to K8[Al2(C3H6NP3O9)2(OH)2]·20H2O (3). Complexes 13 were characterized by elemental analysis, FT-IR, 13C, 31P, 1H NMR (for 12 solid state and solution NMR where feasible), and X-ray crystallography. The structures of 13 reveal the presence of uniquely defined dinuclear complexes of octahedral Al(III) bound to fully deprotonated phosphonate ligands, water and hydroxo moieties. The aqueous solution speciation studies on the aforementioned binary systems project a clear picture of the binary Al(III)–(carboxy)phosphonate interactions and species under variable pH-conditions and specific Al(III):ligand stoichiometry. The concurrent solid state and solution work (a) exemplifies essential structural and chemical attributes of soluble aqueous species, reflecting well-defined interactions of Al(III) with phosphosubstrates and (b) strengthens the potential linkage of neurotoxic Al(III) chemical reactivity toward O,N-containing (carboxy)phosphate-rich cellular targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号