首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5418篇
  免费   297篇
  国内免费   208篇
  2023年   96篇
  2022年   137篇
  2021年   185篇
  2020年   199篇
  2019年   227篇
  2018年   158篇
  2017年   234篇
  2016年   187篇
  2015年   184篇
  2014年   265篇
  2013年   476篇
  2012年   177篇
  2011年   336篇
  2010年   191篇
  2009年   330篇
  2008年   325篇
  2007年   302篇
  2006年   255篇
  2005年   221篇
  2004年   194篇
  2003年   170篇
  2002年   142篇
  2001年   66篇
  2000年   73篇
  1999年   77篇
  1998年   75篇
  1997年   39篇
  1996年   46篇
  1995年   53篇
  1994年   51篇
  1993年   44篇
  1992年   39篇
  1991年   43篇
  1990年   28篇
  1989年   25篇
  1988年   18篇
  1987年   25篇
  1986年   23篇
  1985年   21篇
  1984年   23篇
  1983年   19篇
  1982年   21篇
  1981年   15篇
  1980年   14篇
  1979年   19篇
  1978年   14篇
  1977年   20篇
  1976年   11篇
  1975年   10篇
  1973年   6篇
排序方式: 共有5923条查询结果,搜索用时 46 毫秒
911.
Leaves of overwintering evergreen rhododendrons are typically exposed to freezing temperatures and high light during winters which can potentially result in photon flux exceeding that required for photochemistry. This excess energy, if not dissipated as heat or fluorescence, may cause photooxidative damage to PSII. The goal of this study is to compare the photoprotection strategies during seasonal cold acclimation (CA) in two Rhododendron species (R. catawbiense Michx. and R. ponticum L.) that are divergent in their leaf freezing tolerance and thermonastic behaviour (temperature-induced leaf movement). R. catawbiense exhibits thermonasty while R. ponticum does not. Differences in leaf freezing tolerance (LT50), photosynthesis, photoinhibition, early light-induced proteins (ELIPs) gene expression, and accumulation of antioxidant metabolites and enzymes during seasonal CA were investigated. During seasonal CA, maximum photosynthetic rate (Pmax) and maximum quantum efficiency of PSII (Fv/Fm) were significantly down-regulated. Compared with R. catawbiense, R. ponticum showed less photoinhibition and higher overall accumulation (in magnitude) of antioxidant systems while R. catawbiense exhibited more efficient up-regulation of ELIP expression and antioxidant system (i.e., greater efficiency of increasing this pool in winter months relative to the summer levels). The two species respond differently to winter conditions and have evolved strategies to avoid, reduce and/or tolerate photooxidative stress in winter. These include down-regulation of photosynthesis and up-regulation of ELIPs and antioxidant systems, together with specialized leaf anatomy and thermonasty behaviour.  相似文献   
912.
The genus Lotus comprises a heterogeneous group of annual and perennial species. Lotus japonicus (with MG20 and Gifu ecotypes) has been adopted as one of the model legumes in genetic and genomic studies. Other Lotus species, such us Lotus burttii and Lotus filicaulis, have also been used in genetic and genomic studies because of their capacity to produce fertile progenies in crosses with L. japonicus. In the present work, physiological responses to salt stress in four Lotus genotypes were evaluated on the basis of growth and associated parameters, such as photosynthesis, ions, relative water content, oxidative damage and antioxidant system responses, using two NaCl levels applied by acclimation for up to 28 and 60 d. Growth responses varied with plant developmental stage in the four Lotus genotypes. L. japonicus MG20 was found to be a salt-tolerant genotype, mainly when exposed to salt stress at the young plant stage. The capacity of Lj MG20 to sustain growth under salt stress was correlated with enhancement of Superoxide dismutase and Glutathione reductase activities, as well as with increases in total and reduced glutathione content and lower Na+ accumulation in leaves. These results suggest that enhancement of antioxidant responses in Lj MG20 contributed to improve salt stress tolerance at early stages. On the other hand, after long-term high NaCl stress treatment, L. filicaulis exhibited lower biomass reduction, lower oxidative damage and Na+ accumulation in leaves than the control treatment; hence, this genotype was considered salt-tolerant. These apparently ambiguous results remark that salt tolerance, as a development-related process, was differentially expressed among the Lotus genotypes and depended on stress duration and plant phenological stage.  相似文献   
913.
酶促和非酶促抗氧化系统在玉米胚脱水耐性获得中的作用   总被引:2,自引:0,他引:2  
以发育中的玉米胚为材料,研究了玉米胚脱水耐性的发育变化及其与抗氧化系统之间的关系。结果表明,授粉后18d的胚获得萌发能力,但不耐脱水;授粉后36d的胚开始获得耐脱水能力,并随着发育逐渐增加。随着发育,胚的超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)和脱氢抗坏血酸还原酶(DHAR)的活性逐渐降低,过氧化氢酶(CAT)活性逐渐增加。授粉后16~22d的玉米胚中检测不到抗坏血酸,24d后胚中抗坏血酸的含量显著增加;还原性谷胱甘肽含量在整个发育过程中逐渐增加。脱水胚的SOD、APX和DHAR的活性比对照(未脱水)胚低,而GR和CAT活性在发育早期比对照胚低,在发育中、后期高于对照胚。脱水胚的抗坏血酸和还原性谷胱甘肽含量明显低于对照胚。胚中丙二醛的含量随着发育逐渐下降,脱水胚的丙二醛含量显著高于对照。这些结果说明CAT活性和谷胱甘肽含量的增加以及脂质过氧化产物丙二醛含量的下降与玉米胚脱水耐性的获得密切相关。  相似文献   
914.
Serotonin derivatives belong to a class of phenylpropanoid amides found at low levels in a wide range of plant species. Representative serotonin derivatives include feruloylserotonin (FS) and 4-coumaroylserotonin (CS). Since the first identification of serotonin derivatives in safflower seeds, their occurrence, biological significance, and pharmacological properties have been reported. Recently, serotonin N-hydroxycinnamoyl transferase (SHT), which is responsible for the synthesis of serotonin derivatives, was cloned from pepper (Capsicum annuum) and characterized in terms of its enzyme kinetics. Using the SHT gene, many attempts have been made to either increase the level of serotonin derivatives in transgenic plants or produce serotonin derivatives de novo in microbes by dual expression of key genes such as SHT and 4-coumarate-CoA ligase (4CL). Due to the strong antioxidant activity and other therapeutic properties of serotonin derivatives, these compounds may have high potential in treatment and prophylaxis, as cosmetic ingredients, and as major components of functional foods or feeds that have health-improving effects. This review examines the biosynthesis of serotonin derivatives, corresponding enzymes, heterologous production in plants or microbes, and their applications.  相似文献   
915.
Chrysomela populi beetles feed on poplar leaves and extensively damage plantations. We investigated whether olfactory cues orientate landing and feeding. Young, unexpanded leaves of hybrid poplar emit constitutively a blend of monoterpenes, primarily ( E )- β -ocimene and linalool. This blend attracts inexperienced adults of C. populi that were not previously fed with poplar leaves. In mature leaves constitutively emitting isoprene, insect attack induces biosynthesis and emission of the same blend of monoterpenes, but in larger amount than in young leaves. The olfactometric test indicates that inexperienced beetles are more attracted by adult than by young attacked leaves, suggesting that attraction by induced monoterpenes is dose dependent. The blend does not attract adults that previously fed on poplar leaves. Insect-induced emission of monoterpenes peaks 4 d after the attack, and is also detected in non-attacked leaves. Induced monoterpene emission is associated in mature leaves with a larger decrease of isoprene emission. The reduction of isoprene emission is faster than photosynthesis reduction in attacked leaves, and also occurs in non-attacked leaves. Insect-induced monoterpenes are quickly and completely labelled by 13C. It is speculated that photosynthetic carbon preferentially allocated to constitutive isoprene in healthy leaves is in part diverted to induced monoterpenes after the insect attack.  相似文献   
916.
Ruthenium complexes have attracted much attention as possible building blocks for new transition-metal-based antitumor agents. The present study examines the mitotoxic and clastogenic effects induced in the root tips of Allium cepa by cis-tetraammine(oxalato)ruthenium(III) dithionate {cis-[Ru(C2O2)(NH3)4]2(S2O6)} at different exposure durations and concentrations. Correlation tests were performed to determine the effects of the time of exposure and concentration of ruthenium complex on mitotic index (MI) and mitotic aberration index. A comparison of MI results of cis-[Ru(C2O2)(NH3)4]2(S2O6) to those of lead nitrate reveals that the ruthenium complex demonstrates an average mitotic inhibition eightfold higher than lead, with the frequency of cellular abnormalities almost fourfold lower and mitotic aberration threefold lower. A. cepa root cells exposed to a range of ruthenium complex concentrations did not display significant clastogenic effects. Cis-tetraammine(oxalato)ruthenium(III) dithionate therefore exhibits a remarkable capacity to inhibit mitosis, perhaps by inhibiting DNA synthesis or blocking the cell cycle in the G2 phase. Further investigation of the mechanisms of action of this ruthenium complex will be important to define its clinical potential and to contribute to a novel and rational approach to developing a new metal-based drug with antitumor properties complementary to those exhibited by the drugs already in clinical use.  相似文献   
917.
To understand the functions of antioxidant enzymes during leaf development in sweetpotato, we investigated the activities of several antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX), ascorbate peroxidase (APX) and catalase (CAT). Significant increases were observed in the activities of SOD, POX and APX during the late stage of leaf development, whereas CAT activity increased during the early developmental stage. By RT-PCR analysis, various POX and APX genes showed differential expression patterns during leaf development. Four POX genes swpa3, swpa4, swpa6, swpb4 and one APX gene swAPX1 exhibited high levels of gene expression during the senescence stage of leaf development, but two POX genes, swpa1 and swpa7 were preferentially expressed at both the mature green and the late senescence stages of leaf development. These results indicate that hydrogen peroxide (H2O2)-related antioxidant enzymes are differentially regulated in the process of leaf development of sweetpotato.  相似文献   
918.
919.
Isolation of a broth extract of the endophytic fungus Corynespora cassiicola L36 afforded three compounds, corynesidones A (1) and B (3), and corynether A (5), together with a known diaryl ether 7. Compounds 1, 3, 5, and 7 were relatively non-toxic against cancer cells, and inactive toward normal cell line, MRC-5. Corynesidone B (3) exhibited potent radical scavenging activity in the DPPH assay, whose activity was comparable to ascorbic acid. Based on the ORAC assay, compounds 1, 3, 5, and 7 showed potent antioxidant activity. However, the isolated natural substances and their methylated derivatives (18) neither inhibited superoxide anion radical formation in the XXO assay nor suppressed TPA-induced superoxide anion generation in HL-60 cell line. Corynesidone A (1) inhibited aromatase activity with an IC50 value of 5.30 μM.  相似文献   
920.
Xanthone production in Hypericum perforatum (HP) suspension cultures in response to elicitation by Agrobacterium tumefaciens co-cultivation has been studied. RNA blot analyses of HP cells co-cultivated with A. tumefaciens have shown a rapid up-regulation of genes encoding important enzymes of the general phenylpropanoid pathway (PAL, phenylalanine ammonia lyase and 4CL, 4-coumarate:CoA ligase) and xanthone biosynthesis (BPS, benzophenone synthase). Analyses of HPLC chromatograms of methanolic extracts of control and elicited cells (HP cells that were co-cultivated for 24 h with A. tumefaciens) have revealed a 12-fold increase in total xanthone concentration and also the emergence of many xanthones after elicitation. Methanolic extract of elicited cells exhibited significantly higher antioxidant and antimicrobial competence than the equivalent extract of control HP cells indicating that these properties have been significantly increased in HP cells after elicitation. Four major de novo synthesized xanthones have been identified as 1,3,6,7-tetrahydroxy-8-prenyl xanthone, 1,3,6,7-tetrahydroxy-2-prenyl xanthone, 1,3,7-trihydroxy-6-methoxy-8-prenyl xanthone and paxanthone. Antioxidant and antimicrobial characterization of these de novo xanthones have revealed that xanthones play dual function in plant cells during biotic stress: (1) as antioxidants to protect the cells from oxidative damage and (2) as phytoalexins to impair the pathogen growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号