首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5813篇
  免费   331篇
  国内免费   513篇
  2023年   81篇
  2022年   127篇
  2021年   157篇
  2020年   152篇
  2019年   203篇
  2018年   195篇
  2017年   154篇
  2016年   205篇
  2015年   183篇
  2014年   308篇
  2013年   555篇
  2012年   188篇
  2011年   249篇
  2010年   236篇
  2009年   256篇
  2008年   239篇
  2007年   259篇
  2006年   231篇
  2005年   211篇
  2004年   198篇
  2003年   164篇
  2002年   170篇
  2001年   120篇
  2000年   127篇
  1999年   146篇
  1998年   123篇
  1997年   123篇
  1996年   120篇
  1995年   142篇
  1994年   131篇
  1993年   141篇
  1992年   120篇
  1991年   96篇
  1990年   66篇
  1989年   55篇
  1988年   67篇
  1987年   56篇
  1986年   41篇
  1985年   47篇
  1984年   51篇
  1983年   26篇
  1982年   19篇
  1981年   23篇
  1980年   16篇
  1979年   9篇
  1978年   17篇
  1976年   13篇
  1975年   7篇
  1974年   11篇
  1972年   7篇
排序方式: 共有6657条查询结果,搜索用时 31 毫秒
951.
Experimental and clinical studies often require highly purified cell populations. FACS is a technique of choice to purify cell populations of known phenotype. Other bulk methods of purification include panning, complement depletion and magnetic bead separation. However, FACS has several advantages over other available methods. FACS is the preferred method when very high purity of the desired population is required, when the target cell population expresses a very low level of the identifying marker or when cell populations require separation based on differential marker density. In addition, FACS is the only available purification technique to isolate cells based on internal staining or intracellular protein expression, such as a genetically modified fluorescent protein marker. FACS allows the purification of individual cells based on size, granularity and fluorescence. In order to purify cells of interest, they are first stained with fluorescently-tagged monoclonal antibodies (mAb), which recognize specific surface markers on the desired cell population (1). Negative selection of unstained cells is also possible. FACS purification requires a flow cytometer with sorting capacity and the appropriate software. For FACS, cells in suspension are passed as a stream in droplets with each containing a single cell in front of a laser. The fluorescence detection system detects cells of interest based on predetermined fluorescent parameters of the cells. The instrument applies a charge to the droplet containing a cell of interest and an electrostatic deflection system facilitates collection of the charged droplets into appropriate collection tubes (2). The success of staining and thereby sorting depends largely on the selection of the identifying markers and the choice of mAb. Sorting parameters can be adjusted depending on the requirement of purity and yield. Although FACS requires specialized equipment and personnel training, it is the method of choice for isolation of highly purified cell populations.  相似文献   
952.
A recombinant human antibody expressed in corn was purified using aqueous two‐phase extraction. The antibody was an immunoglobulin G fully unglycosylated. Using systems of different compositions and/or pHs in each of one or two partitioning stages followed by one more stage in which the antibody was precipitated at the liquid/liquid interface facilitated the removal of different impurities in each stage. The best system yields a product 72% pure (22‐fold purification) with a yield of 49%. The optimum extraction was done in two partitioning stages followed by an interfacial precipitation stage using poly(ethylene)glycol/potassium phosphate systems. NaCl was added to the first stage to eliminate large molecular weight impurities. The pH in the first stage was kept at 6 but a pH of 8 was used in the second stage and in the precipitation stage. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
953.
Manufacture of recombinant proteins from mammalian cell lines requires the use of bioreactor systems at scales of up to 20,000 L. The cost and complexity of such systems can prohibit their extensive use during the process to construct and select the manufacturing cell line. It is therefore common practice to develop a model of the production process in a small scale vessel, such as a shake‐flask, where lower costs, ease of handling, and higher throughput are possible. This model can then be used to select a small number of cell lines for further evaluation in bioreactor culture. Here, we extend our previous work investigating cell line construction strategies to assess how well the behavior of cell lines in such a shake‐flask assessment predicts behavior in the associated bioreactor production process. A panel of 29 GS‐CHO cell lines, all producing the same antibody, were selected to include a mixture of high and low producers from a pool of 175 transfectants. Assessment of this panel in 10 L bioreactor culture revealed wide variation in parameters including growth, productivity, and metabolite utilization. In general, those cell lines which were high producing in the bioreactor cultures had also been higher producing in an earlier shake‐flask assessment. However, some changes in rank position of the evaluated cell lines were seen between the two systems. A potential explanation of these observations is discussed and approaches to improve the predictability of assessments used for cell line selection are considered. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
954.
During early preclinical development of therapeutic proteins, representative materials are often required for process development, such as for pharmacokinetic/pharmacodynamic studies in animals, formulation design, and analytical assay development. To rapidly generate large amounts of representative materials, transient transfection is commonly used. Because of the typical low yields with transient transfection, especially in CHO cells, here we describe an alternative strategy using stable transfection pool technology. Using stable transfection pools, gram quantities of monoclonal antibody (Mab) can be generated within 2 months post‐transfection. Expression levels for monoclonal antibodies can be achieved ranging from 100 mg/L to over 1000 mg/L. This methodology was successfully scaled up to a 200 L scale using disposable bioreactor technology for ease of rapid implementation. When fluorescence‐activated cell sorting was implemented to enrich the transfection pools for high producers, the productivity could be improved by about three‐fold. We also found that an optimal production time window exists to achieve the highest yield because the transfection pools were not stable and productivity generally decreased over length in culture. The introduction of Universal chromatin‐opening elements elements into the expression vectors led to significant productivity improvement. The glycan distribution of the Mab product generated from the stable transfection pools was comparable to that from the clonal stable cell lines. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
955.
The pandemic of human immunodeficiency virus type one (HIV-1), the major etiologic agent of acquired immunodeficiency disease (AIDS), has led to over 33 million people living with the virus, among which 18 million are women and children. Until now, there is neither an effective vaccine nor a therapeutic cure despite over 30 years of efforts. Although the Thai RV144 vaccine trial has demonstrated an efficacy of 31.2%, an effective vaccine will likely rely on a breakthrough discovery of immunogens to elicit broadly reactive neutralizing antibodies, which may take years to achieve. Therefore, there is an urgency of exploring other prophylactic strategies. Recently, antiretroviral treatment as prevention is an exciting area of progress in HIV-1 research. Although effective, the implementation of such strategy faces great financial, political and social challenges in heavily affected regions such as developing countries where drug resistant viruses have already been found with growing incidence. Activating latently infected cells for therapeutic cure is another area of challenge. Since it is greatly difficult to eradicate HIV-1 after the establishment of viral latency, it is necessary to investigate strategies that may close the door to HIV-1. Here, we review studies on non-vaccine strategies in targeting viral entry, which may have critical implications for HIV-1 prevention.  相似文献   
956.
Activation-induced cytidine deaminase (AID) is required for the generation of antibody diversity through initiating both somatic hypermutation (SHM) and class switch recombination. A few research groups have successfully used the feature of AID for generating mutant libraries in directed evolution of target proteins in B cells in vitro. B cells, cultured in suspension, are not convenient for transfection and cloning. In this study, we established an AID-based mutant accumulation and sorting system in adherent human cells. Mouse AID gene was first transfected into the human non-small cell lung carcinoma H1299 cells, and a stable cell clone (H1299-AID) was selected. Afterwards, anti-hTNF-αscFv (ATscFv) was transfected into H1299-AID cells and ATscFv was displayed on the surface of H1299-AID cells. By 4-round amplification/flow cytometric sorting for cells with the highest affinities to hTNF-alpha, two ATscFv mutant gene clones were isolated. Compared with the wild type ATscFv, the two mutants were much more efficient in neutralizing cytotoxicity of hTNF-alpha. The results indicate that directed evolution by somatic hypermutation can be carried out in adherent non-B cells, which makes directed evolution in mammalian cells easier and more efficient.  相似文献   
957.
陈伟  徐卫华 《昆虫学报》2015,58(2):115-121
【目的】c-Myc是近年来研究较多的转录因子,也是受Wnt/β-catenin信号通路调节的重要靶标。本研究旨在克隆棉铃虫 Helicoverpa armigera c-Myc基因,从核酸水平初步调查 c-myc 在滞育和非滞育蛹脑中的表达情况,同时制备其蛋白的多克隆抗体。【方法】通过RACE方法克隆棉铃虫 c-myc 基因的cDNA,运用RT-PCR方法比较滞育和非滞育蛹脑中Har-c-myc基因的表达情况。根据获取的序列构建原核表达载体,在大肠杆菌 Escherichia coli 中进行表达,纯化后免疫新西兰兔,制备了多克隆抗体。【结果】克隆了棉铃虫 c-myc 基因,核酸水平的研究表明滞育蛹脑中 c-myc 表达水平明显低于非滞育蛹脑。成功地在大肠杆菌中表达了c-Myc部分肽段并通过镍柱纯化获得了较纯的重组蛋白。制备的c-Myc抗体效价达到了1:125 000。【结论】滞育蛹脑中 Har-c-myc 的表达下调。获得了抗棉铃虫c-Myc的多克隆抗体。本研究的成果为后续进一步深入研究棉铃虫Wnt/β-catenin信号通路在棉铃虫发育中的作用奠定了基础。  相似文献   
958.
Antibodies have proved to be a valuable mode of therapy for numerous diseases, mainly owing to their high target binding affinity and specificity. Unfortunately, antibodies are also limited in several respects, chief amongst those being the extremely high cost of manufacture. Therefore, non-antibody binding proteins have long been sought after as alternative therapies. New binding protein scaffolds are constantly being designed or discovered with some already approved for human use by the FDA. This review focuses on protein scaffolds that are either already being used in humans or are currently being evaluated in clinical trials. Although not all are expected to be approved, the significant benefits ensure that these molecules will continue to be investigated and developed as therapeutic alternatives to antibodies. Based on the location of the amino acids that mediate ligand binding, we place all the protein scaffolds under clinical development into two general categories: scaffolds with ligand-binding residues located in exposed flexible loops, and those with the binding residues located in protein secondary structures, such as α-helices. Scaffolds that fall under the first category include adnectins, anticalins, avimers, Fynomers, Kunitz domains, and knottins, while those belonging to the second category include affibodies, β-hairpin mimetics, and designed ankyrin repeat proteins (DARPins). Most of these scaffolds are thermostable and can be easily produced in microorganisms or completely synthesized chemically. In addition, many of these scaffolds derive from human proteins and thus possess very low immunogenic potential. Additional advantages and limitations of these protein scaffolds as therapeutics compared to antibodies will be discussed.  相似文献   
959.
Introduction: High-content protein microarrays in principle enable the functional interrogation of the human proteome in a broad range of applications, including biomarker discovery, profiling of immune responses, identification of enzyme substrates, and quantifying protein-small molecule, protein-protein and protein-DNA/RNA interactions. As with other microarrays, the underlying proteomic platforms are under active technological development and a range of different protein microarrays are now commercially available. However, deciphering the differences between these platforms to identify the most suitable protein microarray for the specific research question is not always straightforward.

Areas covered: This review provides an overview of the technological basis, applications and limitations of some of the most commonly used full-length, recombinant protein and protein fragment microarray platforms, including ProtoArray Human Protein Microarrays, HuProt Human Proteome Microarrays, Human Protein Atlas Protein Fragment Arrays, Nucleic Acid Programmable Arrays and Immunome Protein Arrays.

Expert commentary: The choice of appropriate protein microarray platform depends on the specific biological application in hand, with both more focused, lower density and higher density arrays having distinct advantages. Full-length protein arrays offer advantages in biomarker discovery profiling applications, although care is required in ensuring that the protein production and array fabrication methodology is compatible with the required downstream functionality.  相似文献   

960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号