首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1038篇
  免费   82篇
  国内免费   30篇
  2024年   3篇
  2023年   6篇
  2022年   11篇
  2021年   28篇
  2020年   27篇
  2019年   22篇
  2018年   28篇
  2017年   24篇
  2016年   26篇
  2015年   37篇
  2014年   27篇
  2013年   59篇
  2012年   26篇
  2011年   32篇
  2010年   17篇
  2009年   60篇
  2008年   76篇
  2007年   73篇
  2006年   51篇
  2005年   44篇
  2004年   28篇
  2003年   39篇
  2002年   35篇
  2001年   38篇
  2000年   30篇
  1999年   28篇
  1998年   30篇
  1997年   24篇
  1996年   27篇
  1995年   18篇
  1994年   17篇
  1993年   17篇
  1992年   12篇
  1991年   16篇
  1990年   14篇
  1989年   22篇
  1988年   10篇
  1987年   8篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   5篇
  1982年   11篇
  1981年   6篇
  1980年   6篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1150条查询结果,搜索用时 15 毫秒
81.
We investigated the under-ice light climate and the efficiency with which light was absorbed and utilized by benthic algal mats in Lakes Hoare and Vanda, two perennially ice-covered lakes in the McMurdo Dry Valleys area of Southern Victoria Land, Antarctica. The ice cover and water column of Lake Vanda were much more transparent than those of Lake Hoare (18% vs. 2% transmission though ice and attenuation coefficients for downwelling irradiance of 0.05 vs. 0.12 m 1, respectively). In both lakes the under-ice spectra were dominated by blue-green wavelengths. The benthic flora under perennial ice covers of both lakes comprised thick mucilaginous mats, dominated by cyanobacteria. The mats were well suited to absorb the dominant blue-green wavelengths of the under-ice light, with phycoerythrin being present at high concentrations. The pigment systems of the benthic mats absorbed 30%–50% of the light that reached them, varying with depth and lake. There was a tendency for the percentage of absorption to increase as ambient irradiance decreased. The efficiency of utilization of absorbed irradiance was examined by constructing absorbed irradiance/oxygen evolution curves to estimate community quantum yield. Mats from 13 m in Lake Hoare showed the highest quantum yields, approaching 1 mol of carbon fixed for every 8 mol quanta absorbed under light-limiting conditions. Lake Vanda mats had lower quantum yields, but these increased with depth. Calculated in situ irradiance occasionally exceeded the measured saturating irradiance for oxygen evolution in both lakes, thus efficiency in situ was below the maximum at times. As in other environments, optimization strategies allowed efficient capture and utilization of the lower and middle ranges of experienced irradiance but led to a compromised capacity to use the highest irradiances encountered at each depth.  相似文献   
82.
We immobilized 200–550-kg leopard seals ( Hydrurga leptonyx ) on sea ice in Prydz Bay, Antarctica (68°25'S, 77°10'E) between November 1997 and February 2000. Midazolam (0.18–0.27 mg/kg)/ pethidine (1.0–1.5 mg/kg) was administered by dart to 16 leopard seals. Unpredictable immobilization, poor airway maintenance, and our inability to fully assess the suitability of flumazenil (0.003–0.01 mg/kg), naloxone (0.01–0.013 mg/kg), and naltrexone (0.05–0.12 mg/kg) as reversal agents limited suitability of midazolam/pethidine. Tiletamine/zolazepam 1:1 (0.5–1.5 mg/kg) was, therefore, administered to 19 leopard seals. It produced faster induction (19 ± 3 min), more effective and reliable response to dose (rank correlation: r s= 0.88, n = 18), and better pulmonary ventilation and faster return of cognitive function upon recovery, in comparison to midazolam/pethidine. Best results were achieved with tiletamine/zolazepam (1.2–1.4 mg/kg) which safely immobilized seven of nine seals for 20–30 min. Entry to the water upon darting was minimized, but not eliminated, by the use of lightweight air-pressurized darts and a thorough knowledge of leopard seal behavior.  相似文献   
83.
Two extracellular tannin acyl hydrolases (TAH I and TAH II) produced by an Antarctic filamentous fungus Verticillium sp. P9 were purified to homogeneity (7.9- and 10.5-fold with a yield of 1.6 and 0.9%, respectively) and characterized. TAH I and TAH II are multimeric (each consisting of approximately 40 and 46 kDa sub-units) glycoproteins containing 11 and 26% carbohydrates, respectively, and their molecular mass is approximately 155 kDa. TAH I and TAH II are optimally active at pH of 5.5 and 25 and 20°C, respectively. Both the enzymes were activated by Mg2+and Br ions and 0.5–2.0 M urea and inhibited by other metal ions (Zn2+, Cu2+, K+, Cd2+, Ag+, Fe3+, Mn2+, Co2+, Hg2+, Pb2+ and Sn2+), anions, Tween 20, Tween 60, Tween 80, Triton X-100, sodium dodecyl sulphate, β-mercaptoethanol, α-glutathione and 4-chloromercuribenzoate. Both tannases more efficiently hydrolyzed tannic acid than methyl gallate. E a of these reactions and temperature dependence (at 0–30°C) of k cat, k cat/K m, ΔG*, ΔH* and ΔS* for both the enzymes and substrates were determined. The k cat and k cat/K m values (for both the substrates) were considerably higher for the combined preparation of TAH I and TAH II.  相似文献   
84.
85.
  • 1 Blue whale locations in the Southern Hemisphere and northern Indian Ocean were obtained from catches (303 239), sightings (4383 records of ≥8058 whales), strandings (103), Discovery marks (2191) and recoveries (95), and acoustic recordings.
  • 2 Sighting surveys included 7 480 450 km of effort plus 14 676 days with unmeasured effort. Groups usually consisted of solitary whales (65.2%) or pairs (24.6%); larger feeding aggregations of unassociated individuals were only rarely observed. Sighting rates (groups per 1000 km from many platform types) varied by four orders of magnitude and were lowest in the waters of Brazil, South Africa, the eastern tropical Pacific, Antarctica and South Georgia; higher in the Subantarctic and Peru; and highest around Indonesia, Sri Lanka, Chile, southern Australia and south of Madagascar.
  • 3 Blue whales avoid the oligotrophic central gyres of the Indian, Pacific and Atlantic Oceans, but are more common where phytoplankton densities are high, and where there are dynamic oceanographic processes like upwelling and frontal meandering.
  • 4 Compared with historical catches, the Antarctic (‘true’) subspecies is exceedingly rare and usually concentrated closer to the summer pack ice. In summer they are found throughout the Antarctic; in winter they migrate to southern Africa (although recent sightings there are rare) and to other northerly locations (based on acoustics), although some overwinter in the Antarctic.
  • 5 Pygmy blue whales are found around the Indian Ocean and from southern Australia to New Zealand. At least four groupings are evident: northern Indian Ocean, from Madagascar to the Subantarctic, Indonesia to western and southern Australia, and from New Zealand northwards to the equator. Sighting rates are typically much higher than for Antarctic blue whales.
  • 6 South‐east Pacific blue whales have a discrete distribution and high sighting rates compared with the Antarctic. Further work is needed to clarify their subspecific status given their distinctive genetics, acoustics and length frequencies.
  • 7 Antarctic blue whales numbered 1700 (95% Bayesian interval 860–2900) in 1996 (less than 1% of original levels), but are increasing at 7.3% per annum (95% Bayesian interval 1.4–11.6%). The status of other populations in the Southern Hemisphere and northern Indian Ocean is unknown because few abundance estimates are available, but higher recent sighting rates suggest that they are less depleted than Antarctic blue whales.
  相似文献   
86.
87.
Diversity and genomics of Antarctic marine micro-organisms   总被引:2,自引:0,他引:2  
Marine bacterioplanktons are thought to play a vital role in Southern Ocean ecology and ecosystem function, as they do in other ocean systems. However, our understanding of phylogenetic diversity, genome-enabled capabilities and specific adaptations to this persistently cold environment is limited. Bacterioplankton community composition shifts significantly over the annual cycle as sea ice melts and phytoplankton bloom. Microbial diversity in sea ice is better known than that of the plankton, where culture collections do not appear to represent organisms detected with molecular surveys. Broad phylogenetic groupings of Antarctic bacterioplankton such as the marine group I Crenarchaeota, alpha-Proteobacteria (Roseobacter-related and SAR-11 clusters), gamma-Proteobacteria (both cultivated and uncultivated groups) and Bacteriodetes-affiliated organisms in Southern Ocean waters are in common with other ocean systems. Antarctic SSU rRNA gene phylotypes are typically affiliated with other polar sequences. Some species such as Polaribacter irgensii and currently uncultivated gamma-Proteobacteria (Ant4D3 and Ant10A4) may flourish in Antarctic waters, though further studies are needed to address diversity on a larger scale. Insights from initial genomics studies on both cultivated organisms and genomes accessed through shotgun cloning of environmental samples suggest that there are many unique features of these organisms that facilitate survival in high-latitude, persistently cold environments.  相似文献   
88.
Evolution and biodiversity of Antarctic organisms: a molecular perspective   总被引:1,自引:0,他引:1  
The Antarctic biota is highly endemic, and the diversity and abundance of taxonomic groups differ from elsewhere in the world. Such characteristics have resulted from evolution in isolation in an increasingly extreme environment over the last 100 Myr. Studies on Antarctic species represent some of the best examples of natural selection at the molecular, structural and physiological levels. Analyses of molecular genetics data are consistent with the diversity and distribution of marine and terrestrial taxa having been strongly influenced by geological and climatic cooling events over the last 70 Myr. Such events have resulted in vicariance driven by continental drift and thermal isolation of the Antarctic, and in pulses of species range contraction into refugia and subsequent expansion and secondary contact of genetically distinct populations or sister species during cycles of glaciation. Limited habitat availability has played a major role in structuring populations of species both in the past and in the present day. For these reasons, despite the apparent simplicity or homogeneity of Antarctic terrestrial and marine environments, populations of species are often geographically structured into genetically distinct lineages. In some cases, genetic studies have revealed that species defined by morphological characters are complexes of cryptic or sibling species. Climate change will cause changes in the distribution of many Antarctic and sub-Antarctic species through affecting population-level processes such as life history and dispersal.  相似文献   
89.
A cause and effect understanding of thermal limitation and adaptation at various levels of biological organization is crucial in the elaboration of how the Antarctic climate has shaped the functional properties of extant Antarctic fauna. At the same time, this understanding requires an integrative view of how the various levels of biological organization may be intertwined. At all levels analysed, the functional specialization to permanently low temperatures implies reduced tolerance of high temperatures, as a trade-off. Maintenance of membrane fluidity, enzyme kinetic properties (Km and k(cat)) and protein structural flexibility in the cold supports metabolic flux and regulation as well as cellular functioning overall. Gene expression patterns and, even more so, loss of genetic information, especially for myoglobin (Mb) and haemoglobin (Hb) in notothenioid fishes, reflect the specialization of Antarctic organisms to a narrow range of low temperatures. The loss of Mb and Hb in icefish, together with enhanced lipid membrane densities (e.g. higher concentrations of mitochondria), becomes explicable by the exploitation of high oxygen solubility at low metabolic rates in the cold, where an enhanced fraction of oxygen supply occurs through diffusive oxygen flux. Conversely, limited oxygen supply to tissues upon warming is an early cause of functional limitation. Low standard metabolic rates may be linked to extreme stenothermy. The evolutionary forces causing low metabolic rates as a uniform character of life in Antarctic ectothermal animals may be linked to the requirement for high energetic efficiency as required to support higher organismic functioning in the cold. This requirement may result from partial compensation for the thermal limitation of growth, while other functions like hatching, development, reproduction and ageing are largely delayed. As a perspective, the integrative approach suggests that the patterns of oxygen- and capacity-limited thermal tolerance are linked, on one hand, with the capacity and design of molecules and membranes, and, on the other hand, with life-history consequences and lifestyles typically seen in the permanent cold. Future research needs to address the detailed aspects of these interrelationships.  相似文献   
90.
The bivalve Lissarca notorcadensis is one of the most abundant species in Antarctic waters and has colonised the entire Antarctic shelf and Scotia Sea Islands. Its brooding reproduction, low dispersal capabilities and epizoic lifestyle predict limited gene flow between geographically isolated populations. Relationships between specimens from seven regions in the Southern Ocean and outgroups were assessed with nuclear 28S rDNA and mitochondrial cytochrome oxidase subunit I (COI) genes. The 28S dataset indicate that while Lissarca appears to be a monophyletic genus, there is polyphyly between the Limopsidae and Philobryidae. Thirteen CO1 haplotypes were found, mostly unique to the sample regions, and two distinct lineages were distinguished. Specimens from the Weddell and Ross Sea form one lineage while individuals from the banks and islands of the Scotia Sea form the other. Within each lineage, further vicariance was observed forming six regionally isolated groups. Our results provide initial evidence for reproductively isolated populations of L. notorcadensis. The islands of the Scotia Sea appear to act as centres of speciation in the Southern Ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号