首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   728篇
  免费   111篇
  国内免费   18篇
  2024年   4篇
  2023年   37篇
  2022年   28篇
  2021年   28篇
  2020年   39篇
  2019年   59篇
  2018年   45篇
  2017年   62篇
  2016年   39篇
  2015年   26篇
  2014年   65篇
  2013年   93篇
  2012年   23篇
  2011年   23篇
  2010年   18篇
  2009年   24篇
  2008年   26篇
  2007年   28篇
  2006年   14篇
  2005年   17篇
  2004年   18篇
  2003年   14篇
  2002年   15篇
  2001年   5篇
  2000年   6篇
  1999年   5篇
  1998年   7篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   3篇
  1988年   1篇
  1987年   3篇
  1986年   4篇
  1985年   13篇
  1984年   8篇
  1983年   7篇
  1982年   9篇
  1981年   5篇
  1980年   1篇
  1979年   5篇
  1978年   1篇
排序方式: 共有857条查询结果,搜索用时 62 毫秒
851.
The use of a tilt platform to simulate a lateral ankle sprain and record muscle reaction time is a well-established procedure. However, a potential caveat is that repetitive ankle perturbation may cause a natural attenuation of the reflex latency and amplitude. This is an important area to investigate as many researchers examine the effect of an intervention on muscle reaction time. Muscle reaction time, peak and average amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain (combined inversion and plantar flexion movement) were calculated in twenty-two physically active participants. The 40 perturbations were divided into 4 even groups of 10 dominant limb perturbations. Within-participants repeated measures analysis of variance (ANOVA) tests were conducted to assess the effect of habituation over time for each variable. There was a significant reduction in the peroneus longus average amplitude between the aggregated first and last 10 consecutive ankle perturbations (F2.15,45.09 = 3.90, P = 0.03, ɳp2 = 0.16). Authors should implement no more than a maximum of 30 consecutive ankle perturbations (inclusive of practice perturbations) in future protocols simulating a lateral ankle sprain in an effort to avoid significant attenuation of muscle activity.  相似文献   
852.
In various orthopterous insects backfilling of leg nerve 3B regularly stained, in the thoracic ganglia, small cell bodies that resemble those of central sensory neurons reported in the locust (Br?unig and Hustert 1980). Centrifugal cobalt infusion of this nerve revealed the end organs of those neurons in the periphery. In all species investigated one strand receptor is associated with the trochantin, while two others are situated in the coxa. In addition to these sense organs, the coxa contains a multipolar stretch receptor which spans the coxotrochanteral joint. The absence of chordotonal organs is discussed with reference to earlier work in this field.  相似文献   
853.
A time-dependent measure, termed the rate ratio, was proposed to assess the local dependence between two types of recurrent event processes in one-sample settings. However, the one-sample work does not consider modeling the dependence by covariates such as subject characteristics and treatments received. The focus of this paper is to understand how and in what magnitude the covariates influence the dependence strength for bivariate recurrent events. We propose the covariate-adjusted rate ratio, a measure of covariate-adjusted dependence. We propose a semiparametric regression model for jointly modeling the frequency and dependence of bivariate recurrent events: the first level is a proportional rates model for the marginal rates and the second level is a proportional rate ratio model for the dependence structure. We develop a pseudo-partial likelihood to estimate the parameters in the proportional rate ratio model. We establish the asymptotic properties of the estimators and evaluate the finite sample performance via simulation studies. We illustrate the proposed models and methods using a soft tissue sarcoma study that examines the effects of initial treatments on the marginal frequencies of local/distant sarcoma recurrence and the dependence structure between the two types of cancer recurrence.  相似文献   
854.
Knowing where our limbs are in space is crucial for a successful interaction with the external world. Joint position sense (JPS) relies on both cues from muscle spindles and joint mechanoreceptors, as well as the effort required to move. However, JPS may also rely on the perceived external force on the limb, such as the gravitational field. It is well known that the internal model of gravity plays a large role in perception and behaviour. Thus, we have explored whether direct vestibular-gravitational cues could influence JPS. Participants passively estimated the position of their hand while they were upright and therefore aligned with terrestrial gravity, or pitch-tilted 45° backwards from gravity. Overall participants overestimated the position of their hand in both upright and tilted postures; however, the proprioceptive bias was significantly reduced when participants were tilted. Our findings therefore suggest that the internal model of gravity may influence and update JPS in order to allow the organism to interact with the environment.  相似文献   
855.
The design of personalized movement training and rehabilitation pipelines relies on the ability of assessing the activation of individual muscles concurrently with the resulting joint torques exerted during functional movements. Despite advances in motion capturing, force sensing and bio-electrical recording technologies, the estimation of muscle activation and resulting force still relies on lengthy experimental and computational procedures that are not clinically viable. This work proposes a wearable technology for the rapid, yet quantitative, assessment of musculoskeletal function. It comprises of (1) a soft leg garment sensorized with 64 uniformly distributed electromyography (EMG) electrodes, (2) an algorithm that automatically groups electrodes into seven muscle-specific clusters, and (3) a EMG-driven musculoskeletal model that estimates the resulting force and torque produced about the ankle joint sagittal plane. Our results show the ability of the proposed technology to automatically select a sub-set of muscle-specific electrodes that enabled accurate estimation of muscle excitations and resulting joint torques across a large range of biomechanically diverse movements, underlying different excitation patterns, in a group of eight healthy individuals. This may substantially decrease time needed for localization of muscle sites and electrode placement procedures, thereby facilitating applicability of EMG-driven modelling pipelines in standard clinical protocols.  相似文献   
856.
Although lifting the heels has frequently been observed during balance recovery, the function of this movement has generally been overlooked. The present study aimed to investigate the functional role of heel lifting during regaining balance from a perturbed state. Computer simulation was employed to objectively examine the effect of allowing/constraining heel lifting on balance performance. The human model consisted of 3 rigid body segments connected by frictionless joints. Movements were driven by joint torques depending on current joint angle, angular velocity, and activation level. Starting from forward-inclined and static straight-body postures, the optimization goal was to recover balance effectively (so that ground projection of the mass center returned to the inside of the base of support) and efficiently by adjusting ankle and hip joint activation levels. Allowing/constraining heel lifting resulted in virtually identical movements when balance was mildly perturbed at the smallest lean angle (8°). At larger lean angles (8.5° and 9°), heel lifting assisted balance recovery more evidently with larger joint movements. Partial and altered timings of ankle/hip torque activation due to constraining heel lifting reduced linear and angular momentum generation for avoiding forward falling, and resulted in hindered balancing performance.  相似文献   
857.
Despite the fact that a number of studies have investigated lower extremity energy generation during locomotion, the influence of the metatarsophalangeal (MP) joint remained unknown. The purpose of this study was to determine the relative contribution of the MP joint to the total mechanical energy in running and sprinting. A sagittal plane analysis was performed on data collected from 10 trained male athletes (five runners and five sprinters). The MP moment was assumed to be negligible until the ground reaction force acted distal to the joint. During running, once the ground reaction force crossed the MP joint, the MP moment was plantarflexor for the remainder of ground contact with average peak values of 59.9 Nm. The MP joint moment was plantarflexor throughout the stance phase for sprinting with average peak values of 112.4 Nm. Since the MP joint was dorsiflexing throughout the majority of the stance phase the joint absorbed large amounts of energy, on average 20.9 J during running and 47.8 J during sprinting. A lack of plantarflexion of the MP joint resulted in a lack of energy generation during take-off. Thus, the energy that was absorbed at the joint was dissipated in the shoe and foot structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号