首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   955篇
  免费   88篇
  国内免费   28篇
  2024年   1篇
  2023年   23篇
  2022年   21篇
  2021年   21篇
  2020年   28篇
  2019年   30篇
  2018年   44篇
  2017年   35篇
  2016年   31篇
  2015年   48篇
  2014年   66篇
  2013年   80篇
  2012年   48篇
  2011年   52篇
  2010年   27篇
  2009年   58篇
  2008年   58篇
  2007年   59篇
  2006年   42篇
  2005年   27篇
  2004年   18篇
  2003年   24篇
  2002年   22篇
  2001年   15篇
  2000年   18篇
  1999年   13篇
  1998年   12篇
  1997年   8篇
  1996年   19篇
  1995年   11篇
  1994年   8篇
  1993年   11篇
  1992年   6篇
  1991年   8篇
  1990年   6篇
  1989年   7篇
  1988年   11篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   12篇
  1983年   6篇
  1982年   6篇
  1981年   5篇
  1980年   4篇
  1979年   7篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
排序方式: 共有1071条查询结果,搜索用时 564 毫秒
111.
The phytoplankton lysis rates in the different eutrophic regions of Lake Taihu were determined based on the activities of particle and dissolved esterase, as well as the decay rate of the latter, from August 2009 to March 2010. Two peaks were observed for the chlorophyll a concentration, one in September 2009 and another in January 2010. The highest phytoplankton lysis rates observed in October were associated with the decay of the summer bloom, whereas the minimum lysis rates observed in January were associated with the winter bloom. The highest cell lysis rates in Meiliang Bay, Lake centre, and Gonghu Bay were 0.67, 0.77, and 0.68 d–1, respectively, whereas the lowest lysis rates in these regions were 0.03, 0.01, and 0.05 d–1, respectively. Water temperature showed an apparent indirect effect on lysis rate. In addition, a significant inverse relationship was observed between lysis rates and nitrate concentration in the three lake regions, which suggests that phytoplankton cell lysis is associated with changes in nitrate concentration. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
112.
Plasmonics in Biology and Plasmon-Controlled Fluorescence   总被引:3,自引:0,他引:3  
Fluorescence technology is fully entrenched in all aspects of biological research. To a significant extent, future advances in biology and medicine depend on the advances in the capabilities of fluorescence measurements. As examples, the sensitivity of many clinical assays is limited by sample autofluorescence, single-molecule detection is limited by the brightness and photostability of the fluorophores, and the spatial resolution of cellular imaging is limited to about one-half of the wavelength of the incident light. We believe a combination of fluorescence, plasmonics, and nanofabrication can fundamentally change and increase the capabilities of fluorescence technology. Surface plasmons are collective oscillations of free electrons in metallic surfaces and particles. Surface plasmons, without fluorescence, are already in use to a limited extent in biological research. These applications include the use of surface plasmon resonance to measure bioaffinity reactions and the use of metal colloids as light-scattering probes. However, the uses of surface plasmons in biology are not limited to their optical absorption or extinction. We now know that fluorophores in the excited state can create plasmons that radiate into the far field and that fluorophores in the ground state can interact with and be excited by surface plasmons. These reciprocal interactions suggest that the novel optical absorption and scattering properties of metallic nanostructures can be used to control the decay rates, location, and direction of fluorophore emission. We refer to these phenomena as plasmon-controlled fluorescence (PCF). We predict that PCF will result in a new generation of probes and devices. These likely possibilities include ultrabright single-particle probes that do not photobleach, probes for selective multiphoton excitation with decreased light intensities, and distance measurements in biomolecular assemblies in the range from 10 to 200 nm. Additionally, PCF is likely to allow design of structures that enhance emission at specific wavelengths and the creation of new devices that control and transport the energy from excited fluorophores in the form of plasmons, and then convert the plasmons back to light. Finally, it appears possible that the use of PCF will allow construction of wide-field optical microscopy with subwavelength spatial resolution down to 25 nm.  相似文献   
113.
In this short paper, we describe a novel approach to both significantly accelerate and optically amplify fluorescence-based immunoassays. Our approach utilizes metal-enhanced fluorescence (MEF) to intrinsically optically amplify fluorescence signatures, which, when combined with the use of low-power microwaves to kinetically accelerate assays, provides for both ultrafast and ultrabright immunoassays. Surprisingly, the use of low-power microwaves and silver nanostructures provides for localized heating, concentrating the effect to the particles themselves as compared to the generic heating of the high dielectric assay fluid. We have subsequently applied our microwave-accelerated MEF approach to the detection of myoglobin, where its rapid quantification is paramount for the clinical assessment of an acute myocardial infarction.  相似文献   
114.
Deng-Ke Niu  Jian-Li Cao 《FEBS letters》2010,584(16):3509-3512
In non-mammalian eukaryotes, an abnormally long 3′ untranslated region (UTR) is generally thought to be the definitive signal in the recognition of a premature termination codon (PTC) in nonsense-mediated mRNA decay (NMD). However, because the lengths of 3′ UTRs in normal mRNAs are widely distributed, “abnormally long” is hard to define. Distinct peaks of nucleosome deposition and DNA methylation have recently been found at coding region boundaries. We propose that nucleosomes and DNA methylation just upstream of a normal stop codon are ideal indicators for the position of a normal stop codon and may thus serve as signals in PTC recognition.  相似文献   
115.
Time-resolved fluorescence of 3-methylbenzimidazole (m3B) was used to study stacking interaction between base moieties in di-, tri- and tetra-phosphate analogues of 3-methylbenzimidazolyl(5′-5′)guanosine (m3Bp n G, n = 2, 3, 4), using 5′-triphosphate of 3-methylbenzimidazole riboside (m3BTP) as reference. Fluorescence intensity decays of all compounds cannot be satisfactory fitted with single-exponential function. Although an increase of a number of exponents led to better fits, interpretation of the individual exponential terms, i.e. pre-exponential amplitudes and fluorescence lifetimes, cannot be adequately characterized. We show that these fluorescence decays are best fitted by power-like function derived from physically justified distribution of the fluorescence lifetimes, and characterized by the mean value of the excited-state lifetime and relative variance of lifetime fluctuations around the mean value. The latter led to the parameter of heterogeneity and number of decay paths, which depend on the factors responsible for non-radiative decay of the excited state, including base–base stacking interaction. This was studied by means of changes of temperature and the number of phosphate groups in dinucleotides. It was shown that the strongest effect of stacking interactions, characterized by lowest values of both fluorescence mean decay time and relative variance, occurs in the case of m3Bp3G containing the same number of phosphates as natural mRNA cap. The possible importance of these results for interpretation of the mechanism of function of the mRNA cap structure is discussed.  相似文献   
116.
In dark-grown hypocotyls of the Arabidopsis procuste mutant, a mutation in the CesA6 gene encoding a cellulose synthase reduces cellulose synthesis and severely inhibits elongation growth. Previous studies had left it uncertain why growth was inhibited, because cellulose synthesis was affected before, not during, the main phase of elongation. We characterised the quantity, structure and orientation of the cellulose remaining in the walls of affected cells. Solid-state NMR spectroscopy and infrared microscopy showed that the residual cellulose did not differ in structure from that of the wild type, but the cellulose content of the prc-1 cell walls was reduced by 28%. The total mass of cell-wall polymers per hypocotyl was reduced in prc-1 by about 20%. Therefore, the fourfold inhibition of elongation growth in prc-1 does not result from aberrant cellulose structure, nor from uniform reduction in the dimensions of the cell-wall network due to reduced cellulose or cell-wall mass. Cellulose orientation was quantified by two quantitative methods. First, the orientation of newly synthesised microfibrils was measured in field-emission scanning electron micrographs of the cytoplasmic face of the inner epidermal cell wall. The ordered transverse orientation of microfibrils at the inner face of the cell wall was severely disrupted in prc-1 hypocotyls, particularly in the early growth phase. Second, cellulose orientation distributions across the whole cell-wall thickness, measured by polarised infrared microscopy, were much broader. Analysis of the microfibril orientations according to the theory of composite materials showed that during the initial growth phase, their anisotropy at the plasma membrane was sufficient to explain the anisotropy of subsequent growth.  相似文献   
117.
118.
R Parker 《Genetics》2012,191(3):671-702
All RNA species in yeast cells are subject to turnover. Work over the past 20 years has defined degradation mechanisms for messenger RNAs, transfer RNAs, ribosomal RNAs, and noncoding RNAs. In addition, numerous quality control mechanisms that target aberrant RNAs have been identified. Generally, each decay mechanism contains factors that funnel RNA substrates to abundant exo- and/or endonucleases. Key issues for future work include determining the mechanisms that control the specificity of RNA degradation and how RNA degradation processes interact with translation, RNA transport, and other cellular processes.  相似文献   
119.
120.
Claims of extreme survival of DNA have emphasized the need for reliable models of DNA degradation through time. By analysing mitochondrial DNA (mtDNA) from 158 radiocarbon-dated bones of the extinct New Zealand moa, we confirm empirically a long-hypothesized exponential decay relationship. The average DNA half-life within this geographically constrained fossil assemblage was estimated to be 521 years for a 242 bp mtDNA sequence, corresponding to a per nucleotide fragmentation rate (k) of 5.50 × 10–6 per year. With an effective burial temperature of 13.1°C, the rate is almost 400 times slower than predicted from published kinetic data of in vitro DNA depurination at pH 5. Although best described by an exponential model (R2 = 0.39), considerable sample-to-sample variance in DNA preservation could not be accounted for by geologic age. This variation likely derives from differences in taphonomy and bone diagenesis, which have confounded previous, less spatially constrained attempts to study DNA decay kinetics. Lastly, by calculating DNA fragmentation rates on Illumina HiSeq data, we show that nuclear DNA has degraded at least twice as fast as mtDNA. These results provide a baseline for predicting long-term DNA survival in bone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号