首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2966篇
  免费   210篇
  国内免费   398篇
  2024年   14篇
  2023年   55篇
  2022年   69篇
  2021年   78篇
  2020年   99篇
  2019年   115篇
  2018年   108篇
  2017年   96篇
  2016年   107篇
  2015年   94篇
  2014年   130篇
  2013年   214篇
  2012年   121篇
  2011年   147篇
  2010年   110篇
  2009年   131篇
  2008年   153篇
  2007年   180篇
  2006年   171篇
  2005年   124篇
  2004年   120篇
  2003年   108篇
  2002年   110篇
  2001年   103篇
  2000年   74篇
  1999年   62篇
  1998年   57篇
  1997年   54篇
  1996年   40篇
  1995年   36篇
  1994年   42篇
  1993年   35篇
  1992年   32篇
  1991年   28篇
  1990年   32篇
  1989年   23篇
  1988年   21篇
  1987年   19篇
  1986年   16篇
  1985年   42篇
  1984年   29篇
  1983年   24篇
  1982年   32篇
  1981年   22篇
  1980年   17篇
  1979年   19篇
  1978年   12篇
  1977年   20篇
  1975年   9篇
  1973年   6篇
排序方式: 共有3574条查询结果,搜索用时 203 毫秒
11.
Comparative two-dimensional electrophoresis showed six proteins, which were significantly produced in the root of salt-tolerant barley. These proteins were identified as stress/defense-related proteins that do not scavenge reactive oxygen species directly, suggesting that salt-tolerant barley develops not only an antioxidative system, but also physical and biochemical changes to cope with salt stress.  相似文献   
12.
Using an insoluble inorganic salt precipitation technique, the permeability of cell walls and especially of endodermal Casparian bands (CBs) for ions was tested in young roots of corn (Zea mays) and rice (Oryza sativa). The test was based on suction of either 100 µm CuSO4 or 200 µm K4[Fe(CN)6] into the root from its medium using a pump (excised roots) or transpirational stream (intact seedlings), and subsequent perfusion of xylem of those root segments with the opposite salt component, which resulted in precipitation of insoluble brown crystals of copper ferrocyanide. Under suction, Cu2+ could cross the endodermis apoplastically in both plant species (although at low rates) developing brown salt precipitates in cell walls of early metaxylem and in the region between CBs and functioning metaxylem vessels. Hence, at least Cu2+ did cross the endodermis dragged along with the water. The results suggested that CBs were not perfect barriers to apoplastic ion fluxes. In contrast, ferrocyanide ions failed to cross the mature endodermis of both corn and rice at detectable amounts. The concentration limit of apoplastic copper was 0.8 µm at a perfusion with 200 µm K4[Fe(CN)6]. Asymmetric development of precipitates suggested that the cation, Cu2+, moved faster than the anion, [Fe(CN)6]4–, through cell walls including CBs. Using Chara cell wall preparations (‘ghosts’) as a model system, it was observed that, different from Cu2+, ferrocyanide ions remained inside wall-tubes suggesting a substantially lower permeability of the latter which agreed with the finding of an asymmetric development of precipitates. In both corn and rice roots, there was a significant apoplastic flux of ions in regions where laterals penetrated the endodermis. Overall, the results show that the permeability of CBs to ions is not zero. CBs do not represent a perfect barrier for ions, as is usually thought. The permeability of CBs may vary depending on growth conditions which are known to affect the intensity of formation of bands.  相似文献   
13.
Sodium-induced calcium deficiency in salt-stressed corn   总被引:9,自引:5,他引:4  
Abstract The effect of the Na+/Ca2+ ratio in the root media on salt-stressed corn (Zea mays L. cvs DeKalb XL-75 and Pioneer 3906) was determined in greenhouse experiments. Plants grown in a complete nutrient solution salinized with 86.5 mol m?3 NaCl exhibited severe Ca2+ deficiency symptoms at the four-leaf stage. The symptoms disappeared when part of the NaCl was replaced with 10 mol m?3 CaCl2 (Na+/Ca2+ molar ratio = 5.7). Salt stress at an iso-osmotic potential of ?0.4 MPa substantially decreased shoot growth at all solution Na+/Ca2+ ratios from 34.6 to 0.26. However, the dry weights of blades at 26 d of age were much less when plants were salinized with NaCl alone, particularly that of DeKalb XL-75 which was more susceptible to Na-induced Ca2+ deficiency than was Pioneer 3906. The growth of sheaths was similarity reduced by sail stress at all Na+/Ca2+ ratios. The symptoms of Ca2+ deficiency were correlated with low Ca2+ concentrations in the leaf tissue. Ca2+ concentrations in the developing blades of NaCl-stressed plants were much lower than in control plants. As the Na+/Ca2+ ratio in the solution was decreased, Ca2+ levels increased in both the blades and sheaths while Na+ concentrations greatly decreased. DeKalb XL-75 was much less effective than Pioneer 3906 in restricting the uptake of Na+. The results clearly indicate that NaCl stress may cause lesions and unique plant responses that are not manifested on agronomic plants grown on saline soils.  相似文献   
14.
Abstract Salt excretion by glands on the leaves of Leptochloa fusca was studied. The rate of excretion was strongly dependent on temperature up to 39°C, which is near the optimum for photosynthesis in this thermophilic C4 grass. The concentration of salt in the xylem required to sustain the observed rate of excretion was low (about two orders of magnitude less than the external concentration). Salt excretion is concluded to be a secondary mechanism of salt tolerance, with exclusion at the roots being the major mechanism. The rate of salt excretion was strongly dependent on temperature.  相似文献   
15.
Growth and respiration in two mangrove species at a range of salinities   总被引:3,自引:0,他引:3  
Growth and dark respiration rates were measured in leaves and roots of seedlings of Avicennia marina (Forsk.) Vierh, (grey mangrove), and Aegiceras corniculatum (L.) Blanco (river mangrove). Plants were grown in a soil mixture at ambient temperatures and watered with 0.25 and 100% sea-water. Oxygen uptake was measured in excised root and leaf samples. In both species growth was maximal in 25% sea-water, and root respiration was lowest in 100% sea-water. Differences were found between the two species in the responses of leaf respiration to salinity. In A. corniculatum leaf respiration was raised in both 25 and 100% sea-water, while in A. marina only leaves in 100% sea-water showed higher rates of respiration. These results are consistent with the view that A. marina is the more salt-tolerant of the two species. In A. corniculatum the respiration rates of the hypocotyl were also measured, and were much higher in 100% sea-water than in the other two treatments. The results suggest that at high salinities there is a high metabolic cost in the shoots of both species, and that at such salinities rates of root respiration may be limited by the supply of substrate from the shoots.  相似文献   
16.
The germination response to NaCl treatments has been studied in Melilotus seed populations collected from saline and non-saline soils in the Guadalquivir delta. The rank orders for salt tolerance and seed weight were the same in the threeMelilotus species living in this area:Melilotus messanensis>M. segetalis>M. indica. Within the species, differences in germination response to salinity were found inM. indica (6 populations) andM. segetalis (8 populations). The relationship between salt tolerance during germination and salinity of maternal habitat is discussed.  相似文献   
17.
Salt tolerance of the reed plant Phragmites communis   总被引:6,自引:0,他引:6  
Reed plants ( Phragmites communis Trinius) were grown at NaCl concentrations up to 500 m M and their growth, mineral contents and leaf blade osmotic potential were determined. Addition of NaCl up to 300 m M did not affect growth significantly. Sucrose, Cl-and Na+ concentrations in the shoots increased with the salinity of the medium and the shoot water content decreased. K+ always contributed most to the leaf osmotic potential. Even in the presence of 250 m M NaCl in the rooting medium, the leaf blade contained only 50 mM Na+, suggesting that the plants have an efficient mechanism for Na+ exclusion. 22Na+ uptake experiments suggested that the retranslo-cation of absorbed Na+ from shoots to the rooting medium lowered the uptake of Na+.  相似文献   
18.
19.
Summary The water relations parameters and the osmoregulatory response ofEremosphaera viridis were investigated both by using the pressure probe technique and by analyzing the intracellular pool of osmotically active agents. In the presence of various concentrations of different salts a biphasic osmoregulatory response was recorded, consisting of a rapid decrease in turgor pressure due to water loss followed by an increase in turgor pressure to the original turgor pressure value (depending on the salt). The values of turgor pressure, volumetric elastic modulus and hydraulic conductivity depended on the composition of the media. Nonelectrolytes did not cause a turgor recovery after the initial water efflux. The second phase of turgor regulation in the presence of salts was characterised by the intracellular accumulation of ions and sugars and required at least 24 hr. Analysis of the cell sap showed that the increase in the internal osmotic pressure was mainly achieved by accumulation of sucrose. Additionally, accumulation of glucose was observed in illuminated cells in the presence of Rb and K. Electron micrographs suggested that the sucrose was produced by degradation of starch granules. Turgor pressure recovery after salt stress seemed to be dependent on temperature and is well correlated with the according photosynthetic activity. The data suggest that a temperature-dependent enzyme which is activated by potassium or rubidium is involved in the regulatory response.  相似文献   
20.
Responses of seed germination to salinity were examined using 37 species collected from salt marshes, cliffs, and fore (unstable) and hind (stable) sand dunes along Japanese coasts. For comparison, seed germination of nine inland species was also examined. The soil salinities in salt marshes ranged from 150 to 300 mmol/L NaCl, whereas those in fore and hind dunes ranged from 0 to 150 mmol/L NaCl, with a few exceptions. Cliff soils showed relatively high salinities up to 300 mmol/L NaCl. Ciff and foredune soils that encountered a typhoon and storm showed high salinities >300 mmol/L NaCl. Salt tolerance in seed germination of coastal plants was ordered by comparing the responses of percentage and rate of germination to salinity conditions up to 200 mmol/L NaCl, being in the order of salt marsh>cliff>foredune≅hind dune≅inland. Thse results indicate that salt tolerance in seed germination of coastal plants is closely related to the salinity conditions of their habitats. Germination experiments under favorable conditions showed that a high percentage of the seeds of salt marsh species germinate rapidly, those of diff species germinate slowly and those of foredune species exhibit a low percentage and low rate of germination. It seems that these germination characteristics contribute to the success of germination at the ‘safe site’ and the subsequent survivorship of emerged plants in their natural habitats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号