首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   380篇
  免费   43篇
  国内免费   2篇
  425篇
  2024年   1篇
  2023年   8篇
  2022年   9篇
  2021年   8篇
  2020年   11篇
  2019年   24篇
  2018年   13篇
  2017年   18篇
  2016年   12篇
  2015年   17篇
  2014年   22篇
  2013年   31篇
  2012年   12篇
  2011年   19篇
  2010年   15篇
  2009年   26篇
  2008年   24篇
  2007年   27篇
  2006年   23篇
  2005年   19篇
  2004年   13篇
  2003年   6篇
  2002年   9篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   6篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有425条查询结果,搜索用时 15 毫秒
21.
Up to now, the development of dendrochronological records from tropical regions in South America has been limited to the lowlands with emphasis in the Amazon basin. In this contribution, we present the first chronology of Cedrela nebulosa, a species that develops in the tropical mountainous regions of South America. We collected samples from trees in Monobamba district in Peru, analysed the anatomical features that determine the growth rings, and processed following the methods commonly used in dendrochronology. The 133-years chronology covering the 1883–2015 period, showed large correlation between series. In order to determine the climatic variables that control tree growth, we performed correlation analyses between tree-growth and local and regional precipitation and temperature records. We found that precipitation triggers tree growth at the beginning of the spring season but temperature seems to be the main control in annual growth. Also, C. nebulosa chronology present coherent variations with Multivariate Enso Index (MEI) and Pacific Ocean sea surface temperatures during summer months. This climate-sensitive tree-ring record indicates good potential for dendroclimatic studies and provides an opportunity to reconstruct climatic variations in montane forests of the tropical Andes.  相似文献   
22.
23.
Neotropical lowland organisms often show marked population genetic structure, suggesting restricted migration among populations. However, most phylogeographic studies have focused on species inhabiting humid forest interior. Little attention has been devoted to the study of species with ecologies conducive to dispersal, such as those of more open and variable environments associated with watercourses. Using mtDNA sequences, we examined patterns of genetic variation in a widely distributed Neotropical songbird of aquatic environments, the Yellow-hooded Blackbird (Icteridae, Chrysomus icterocephalus). In contrast to many forest species, Yellow-hooded Blackbirds showed no detectable genetic structure across their range, which includes lowland populations on both sides of the Andes, much of northeastern South America, Amazonia, as well as a phenotypically distinct highland population in Colombia. A coalescent-based analysis of the species indicated that its effective population size has increased considerably, suggesting a range expansion. Our results support the hypothesis that species occurring in open habitats and tracking temporally dynamic environments should show increased dispersal propensities (hence gene flow) relative to species from closed and more stable environments. The phenotypic and behavioral variation among populations of our study species appears to have arisen recently and perhaps in the face of gene flow.  相似文献   
24.
The Andean uplift has played a major role in shaping the current Neotropical biodiversity. However, in arthropods other than butterflies, little is known about how this geographic barrier has impacted species historical diversification. Here, we examined the phylogeography of the widespread color polymorphic spider Gasteracantha cancriformis to evaluate the effect of the northern Andean uplift on its divergence and assess whether its diversification occurred in the presence of gene flow. We inferred phylogenetic relationships and divergence times in G. cancriformis using mitochondrial and nuclear data from 105 individuals in northern South America. Genetic diversity, divergence, and population structure were quantified. We also compared multiple demographic scenarios for this species using a model‐based approach (Phrapl ) to determine divergence with or without gene flow. At last, we evaluated the association between genetic variation and color polymorphism. Both nuclear and mitochondrial data supported two well‐differentiated clades, which correspond to populations occurring on opposite sides of the Eastern cordillera of the Colombian Andes. The final uplift of this cordillera was identified as the most likely force that shaped the diversification of G. cancriformis in northern South America, resulting in a cis‐ and trans‐Andean phylogeographic structure for the species. We also found shared genetic variation between the cis‐ and trans‐Andean clades, which is better explained by a scenario of historical divergence in the face of gene flow. This has been likely facilitated by the presence of low‐elevation passes across the Eastern Colombian cordillera. Our work constitutes the first example in which the Andean uplift coupled with gene flow influenced the evolutionary history of an arachnid lineage.  相似文献   
25.
The study of current distribution patterns of amphibian species in South America is of particular interest in areas such as evolutionary ecology and conservation biology. These patterns could be playing an important role in biological interactions, population size, and connectivity, and potential extinction risk in amphibians. Here, we tested the effects of spatial and environmental factors on the variation, turnover, and phylogenetic diversity of anuran amphibian species in tropical forests of western Ecuador. Data for presence/absence of 101 species of 34 genera and 10 families registered in 12 sites (nested in four biogeographic units) were obtained through fieldwork, museum collections, and literature records. We examined the influence of geographical, altitudinal, temperature, and precipitation distances on differences in anuran composition between sites. We found significant positive correlations among all of these variables with anuran distribution. The greatest alpha diversity (species richness) was found in the Equatorial Chocó biogeographic unit. Equatorial Pacific biogeographic unit could act as a transition zone between the Equatorial Chocó and Equatorial Tumbes. The western Andes (Western Cordillera biogeographic unit) was the most dissimilar and exhibited a higher species turnover rate than the other biogeographic units. Our results suggest that precipitation and elevation play a key role in maintaining the diversity of amphibian species in western Ecuador.  相似文献   
26.
Variation in susceptibility is ubiquitous in multi‐host, multi‐parasite assemblages, and can have profound implications for ecology and evolution in these systems. The extent to which susceptibility to parasites is phylogenetically conserved among hosts can be revealed by analysing diverse regional communities. We screened for haemosporidian parasites in 3983 birds representing 40 families and 523 species, spanning ~ 4500 m elevation in the tropical Andes. To quantify the influence of host phylogeny on infection status, we applied Bayesian phylogenetic multilevel models that included a suite of environmental, spatial, temporal, life history and ecological predictors. We found evidence of deeply conserved susceptibility across the avian tree; host phylogeny explained substantial variation in infection status, and results were robust to phylogenetic uncertainty. Our study suggests that susceptibility is governed, in part, by conserved, latent aspects of anti‐parasite defence. This demonstrates the importance of deep phylogeny for understanding present‐day ecological interactions.  相似文献   
27.
28.
Renealmia L.f. (Zingiberaceae) is one of the few tropical plant genera with numerous species in both Africa and South America but not in Asia. Based on phylogenetic analysis of nuclear ribosomal internal transcribed spacer (ITS) and chloroplast trnL-F DNA, Renealmia is shown to be monophyletic with high branch support. Low sequence divergence found in the two genome regions (ITS: 0-2.4%; trnL-F: 0-1.9%) suggests recent diversification within the genus. Molecular divergence age estimates give further support to the recent origin of the genus and show that Renealmia has attained its amphi-Atlantic distribution by an oceanic long-distance dispersal event from Africa to South America during the Miocene or Pliocene (15.8-2.7 My ago). Some support is found for the hypothesis that speciation in neotropical Renealmia was influenced by the Andean orogeny. Speciation has been approximately simultaneous on both sides of the Atlantic, but increased taxon sampling is required to compare the speciation rates between the New World and Old World tropics.  相似文献   
29.
Aim Species distribution models (SDMs) use the locations of collection records to map the distributions of species, making them a powerful tool in conservation biology, ecology and biogeography. However, the accuracy of range predictions may be reduced by temporally autocorrelated biases in the data. We assess the accuracy of SDMs in predicting the ranges of tropical plant species on the basis of different sample sizes while incorporating real‐world collection patterns and biases. Location Tropical South American moist forests. Methods We use dated herbarium records to model the distributions of 65 Amazonian and Andean plant species. For each species, we use the first 25, 50, 100, 125 and 150 records collected and available for each species to analyse changes in spatial aggregation and climatic representativeness through time. We compare the accuracy of SDM range estimates produced using the time‐ordered data subsets to the accuracy of range estimates generated using the same number of collections but randomly subsampled from all available records. Results We find that collections become increasingly aggregated through time but that additional collecting sites are added resulting in progressively better representations of the species’ full climatic niches. The range predictions produced using time‐ordered data subsets are less accurate than predictions from random subsets of equal sample sizes. Range predictions produced using time‐ordered data subsets consistently underestimate the extent of ranges while no such tendency exists for range predictions produced using random data subsets. Main conclusions These results suggest that larger sample sizes are required to accurately map species ranges. Additional attention should be given to increasing the number of records available per species through continued collecting, better distributed collecting, and/or increasing access to existing collections. The fact that SDMs generally under‐predict the extent of species ranges means that extinction risks of species because of future habitat loss may be lower than previously estimated.  相似文献   
30.
Aim To investigate the palaeoecological changes associated with the last ice age, subsequent deglaciation and human occupation of the central Andes. Location Lake Pacucha, Peruvian Andes (13°36′26″ S, 73°19′42″ W; 3095 m elevation). Methods Vegetation assemblages were reconstructed for the last 24 cal. kyr bp (thousand calibrated 14C years before present), based on pollen analysis of sediments from Lake Pacucha. An age model was established using 14C accelerator mass spectrometry dates on bulk sediment. Fossil pollen and sedimentological analyses followed standard methodologies. Results Puna brava replaced the Andean forest at the elevation of Lake Pacucha at the Last Glacial Maximum (LGM). Deglaciation proceeded rapidly after 16 cal. kyr bp , and near‐modern vegetation was established by c. 14 cal. kyr bp . The deglacial was marked by the range expansion of forest taxa as grassland taxa receded in importance. The mid‐Holocene was marked by a lowered lake level but relatively unchanged vegetation. Quinoa and maize pollen were found in the latter half of the Holocene. Main conclusions Temperatures were about 7–8 °C colder than present at this site during the LGM. The pattern of vegetation change was suggestive of microrefugial expansion rather than simple upslope migration. The mid‐Holocene droughts were interrupted by rainfall events sufficiently frequent to allow vegetation to survive largely unchanged, despite lowering of the lake level. Human activity at the lake included a 5500‐year history of quinoa cultivation and 3000 years of maize cultivation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号