首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   379篇
  免费   43篇
  国内免费   2篇
  2023年   8篇
  2022年   9篇
  2021年   8篇
  2020年   11篇
  2019年   24篇
  2018年   13篇
  2017年   18篇
  2016年   12篇
  2015年   17篇
  2014年   22篇
  2013年   31篇
  2012年   12篇
  2011年   19篇
  2010年   15篇
  2009年   26篇
  2008年   24篇
  2007年   27篇
  2006年   23篇
  2005年   19篇
  2004年   13篇
  2003年   6篇
  2002年   9篇
  2001年   7篇
  2000年   3篇
  1999年   5篇
  1998年   7篇
  1997年   5篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1989年   6篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有424条查询结果,搜索用时 62 毫秒
101.
During the sixteenth and seventeenth centuries, indigenous communities in the Viceroyalty of Peru suffered forced resettlement, introduced disease, and onerous colonial tribute levies. These produced an onslaught of petitions for new tribute counts, as their diminished populations were obliged to pay the head taxes set by earlier censuses. The resulting visitas (administrative surveys) provide a wealth of information on the demography and agricultural systems of colonial Andean communities. However, comparatively little quantitative research exists on the distribution of agricultural resources and the nutritional demands of households. We model agricultural production and nutritional demand using household demographic and landholding declarations in the visitas from the Colca Valley of southern highland Peru, combined with ethnographically-derived estimates of agricultural production and nutritional demand. The results indicate that despite surplus agricultural production in the aggregate, there were significant differences in intra- and inter-community land wealth and production sufficiency ratios, leaving about 30% of households with caloric shortfalls. In contrast to regional-scale carrying capacity-type models, this simulation characterizes agricultural inequality within colonial Andean communities, and thus accounts for the hardship evidenced by tributary recount petitions, even in a breadbasket province from which much surplus production was extracted to fill colonial coffers.
Steven A. WernkeEmail:
  相似文献   
102.
A molecular phylogenetic analysis of most of the species of Perezia reveals that, as traditionally defined, the genus is not monophyletic with two species more closely related to Nassauvia than to Perezia. In addition, our results show that Burkartia (Perezia) lanigera is related to Acourtia and is the only member of that clade in South America. The remaining species are monophyletic and show a pattern of an early split between a western temperate and an eastern subtropical clade of species. Within the western clade, the phylogeny indicates a pattern of diversification that proceeded from southern, comparatively low-elevation habitats to southern high-elevation habitats, and ultimately into more northern high-elevation habitats. The most derived clades are found in the high central Andes, where significant radiation has occurred.  相似文献   
103.
Understanding how organisms use disturbed habitats and how that use can be increased is a pivotal question in conservation biology. We analyzed the relationship between upper canopy cover, a measure of disturbance, and habitat occupancy and use by 18 forest bird species in northwest Ecuador. From May 22 to June 28, 2006 we conducted five, 10-min 50 m-radius point counts at each of the 28 sites (140 total) representing a gradient of habitat disturbance from 1,285 to 1,787 m in elevation. Both habitat occupancy and use showed strong threshold responses at 21–40% upper canopy cover with the probability of occupancy increasing from about 0 to 1 and emigration (the probability that a species would stop using the site during the study period) decreasing from about 1 to 0. Bird surveys ended near the beginning of the driest time of year and high levels of emigration in more disturbed areas imply that forest birds stopped using these areas as the dry season approached, possibly due to a shift in food resources. Patterns of habitat use and occupancy suggest that disturbed habitat in the region (which is primarily abandoned pasture) may only be valuable to forest birds after a specific level of regeneration and during certain times of the year.  相似文献   
104.
Using IUCN Red List species as biodiversity surrogates, supplemented with additional analyses based on ecoregional diversity, priority areas for conservation in Mesoamerica, Chocó, and the Tropical Andes were identified using the methods of systematic conservation planning. Species’ ecological niches were modeled from occurrence records using a maximum entropy algorithm. Niche models for 78 species were refined to produce geographical distributions. Areas were prioritized for conservation attention using a complementarity-based algorithm implemented in the ResNet software package. Targets of representation for Red List species were explored from 10 to 90% of the modeled distributions at 10% increments; for the 53 ecoregions, the target was 10% for each ecoregion. Selected areas were widely dispersed across the region, reflecting the widespread distribution of Red List species in Mesoamerica, Chocó, and the Tropical Andes, which underscores the region’s importance for biodiversity. In general, existing protected areas were no more representative of biodiversity than areas outside them. Among the countries in the region, the protected areas of Belize performed best and those of Colombia and Ecuador worst. A high representation target led to the selection of a very large proportion of each country except Colombia and Ecuador (for a 90% target, 83–95% of each country was selected). Since such large proportions of land cannot realistically be set aside as parks or reserves, biodiversity conservation in Mesoamerica, Chocó, and the Tropical Andes will require integrative landscape management which combines human use of the land with securing the persistence of biota. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
105.
106.
The Spotted Barbtail (Premnoplex brunnescens) inhabits the understory of humid montane forests in Central and South America. Apart from basic information on eggs and nest form, little has been published on its breeding ecology. Using temperature sensors in nest cups, I have collected data on the diurnal patterns of egg-coverage from three nests in eastern Ecuador and reveal a remarkable incubation rhythm. After providing near-constant coverage during the morning, adults leave the eggs unattended for most of the afternoon, returning to the nest only in the late afternoon. The mean duration (±standard deviation) of this period of absence, across the entire incubation period at three nests, was 6.4 ± 1.9 h. These results are discussed in relation to their physiological and ecological significance.  相似文献   
107.
The Andes are a hotspot of global avian diversity, but studies on the historical diversification of Andean birds remain relatively scarce. Evolutionary studies on avian lineages with Andean–Patagonian distributions have focused on reconstructing species-level phylogenies, whereas no detailed phylogeographic studies on widespread species have been conducted. Here, we describe phylogeographic patterns in the Bar-winged Cinclodes (Cinclodes fuscus), a widespread and common species of ovenbird (Furnariidae) that breeds from Tierra del Fuego to the northern Andes. Traditionally, C. fuscus has been considered a single species composed of nine subspecies, but its long and narrow range suggests the possibility of considerable genetic variation among populations. Sequences of two mitochondrial genes revealed three discrete and geographically coherent groups of C. fuscus, occupying the southern, central, and northern Andes. Surprisingly, phylogenetic analyses indicated that these groups were more closely related to other species of Cinclodes than to each other. Relationships of the southern and northern C. fuscus clades to other species of Cinclodes were straightforward; in combination with available information on plumage, behavioral, and vocal variation, this suggests that each should be recognized as a distinct biological species. The central Andean group was paraphyletic with respect to C. oustaleti, and relationships among these taxa and C. olrogi were poorly resolved. We suggest that the central Andean C. fuscus should also be considered a different species, pending new information to clarify species limits in this group. These new phylogenetic data, along with recently developed methods, allowed us to review the biogeography of the genus, confirming southern South America and the central Andes as important areas for the diversification of these birds.  相似文献   
108.
Aim To assess the geological evolution and biogeographical implications of low mountain passes. In particular, we question the common biogeographical belief that major mountain belts form impervious physical barriers to biological dispersal, and that related taxa found on opposites sides of mountains are necessarily a result of vicariant tectonic processes. Location The Southern Alps of New Zealand form a long (500 km) narrow mountain belt at the oblique collisional Pacific–Australian tectonic plate boundary. High mountains were uplifted during the Pliocene (2–5 Ma) and uplift has continued to the present day. Methods We integrate previous work from several disciplines to obtain an overview of inter‐relationships between plate tectonic processes, geomorphology and biogeography along the main mountain barrier in New Zealand, and then extend this approach to other major mountain belts. Results The Southern Alps initially formed a barrier to at least some biological dispersal, including vicariant formation of separate species of freshwater non‐migratory galaxiid fish on either side. However, the high mountain barrier was breached in several places when passive transport of topography occurred, from the low‐erosion rain shadow on the eastern side towards the high‐erosion, high‐rainfall western side. This tectonic transport resulted in the capture of eastern rivers by west‐draining rivers, leaving low passes at the topographic divide. These low‐elevation corridors permitted biological dispersal across the mountains, although continued uplift raises these passes. A new set of passes has formed in the northern part of the mountains where younger faults are cutting across the older mountain topography. These potential dispersal corridors are becoming lower with continued erosion, and more common as the defining structures migrate southwards. Main conclusions Biological dispersal across the Southern Alps may be facilitated by numerous mountain passes, especially via the new passes formed by cross‐cutting faults. More low‐lying corridors existed than is readily apparent now, as old river capture‐related passes have been blocked by ongoing uplift. The dynamic mountain‐building and erosional environment typified by the Southern Alps occurs in all the world’s collisional mountain belts, such as the Andes, Himalayas, European Alps and North American Cordillera. Sister taxa occurring across mountain belts are not necessarily a result of vicariance driven by the rise of the mountains, as numerous passes may have permitted intermittent dispersal. The evolution of low passes may have been more prevalent than is currently appreciated, suggesting that topographically complex mountain ranges might be more effectively viewed as dynamic filters within a probability landscape rather than as static and impervious high‐altitude barriers to all but the rarest of biological dispersal events. In some cases, the biological disjunctions observed across mountains may more directly reflect habitat differentiation driven by orographic mountain development that has limited the probability of trans‐alpine dispersal success.  相似文献   
109.
110.
Aim To improve knowledge of the distribution of species and modern pollen dispersal in the puna vegetation belt (central Andes) for palaeoenvironmental analysis and reconstructions. Location Puna belt, Nevado Coropuna, Western Cordillera, Peru. Methods The vegetation facies and belts of the area were mapped by remote sensing using a March 1998 SPOT4 image. This was complemented by the interpretation of aerial photographs, by field sampling, and by the identification of plants. Data from 1940 to 1994 from the Peruvian meteorological station network were modelled to characterize the relationship between climate and vegetation. Twenty‐four soil‐surface samples were collected in the various vegetation facies identified on the map, and standard palynological techniques were applied to analyse these samples. A principal components analysis was performed on the pollen data set. Results The map shows three bioclimatic belts and seven facies in the puna sensu lato, and identifies the main plants that are characteristic of each bioclimatic area. The pollen results fit the vegetation facies and belts, including the plant species of the distinct facies that are well represented in the pollen assemblages. The mesotropical belt is characterized by the predominance of Asteraceae‐type Ambrosia; the supratropical belt shows significant frequencies of Asteraceae‐type Senecio; the orotropical belt is characterized by high frequencies of Apiaceae and includes Polylepis woodland and peat bogs; and the cryorotropical belt shows significant frequencies of Asteraceae‐type Senecio and Apiaceae. Main conclusions The pollen grains of the plants that grow on the puna sensu lato are generally entomophilous and are therefore not transported far from their plant source. The distinct bioclimatic facies and belts identified by the cartography can thus be well distinguished by their pollen production and deposition. We were therefore able to characterize the relationship between pollen, vegetation and climate that can be used for palaeoenvironmental reconstructions. An altitudinal pollen gradient on the western slopes of the central Andes was revealed by the pollen study, with the succession of Asteraceae‐type Ambrosia (1800–2200 m), Malvaceae (2700–3300 m), Asteraceae‐type Senecio (3500–4100 m) and Apiaceae (above 4600 m).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号